题意

给你n个点,1为起点,n为终点,要求所有1到n所有路径中每条路径上最小值的最最值。


思路

不想打最短路
跑一边最大生成树,再扫一遍1到n的路径,取最小值即可,类似Frogger POJ - 2253,代码都没怎么改


常数巨大的丑陋代码

# include <stdio.h>
# include <stdlib.h>
# include <iostream>
# include <string.h>
# include <math.h>
# include <algorithm>
using namespace std; # define IL inline
# define RG register
# define UN unsigned
# define ll long long
# define rep(i, a, b) for(RG int i = a; i <= b; i++)
# define per(i, a, b) for(RG int i = b; i >= a; i--)
# define uev(e, u) for(RG int e = ft[u]; e != -1; e = edge[e].nt)
# define mem(a, b) memset(a, b, sizeof(a))
# define max(a, b) (((a) > (b)) ? (a) : (b))
# define min(a, b) (((a) < (b)) ? (a) : (b))
# define Swap(a, b) a ^= b, b ^= a, a ^= b; IL ll Get(){
RG char c = '!'; RG ll x = 0, z = 1;
while(c != '-' && (c < '0' || c > '9')) c = getchar();
if(c == '-') z = -1, c = getchar();
while(c >= '0' && c <= '9') x = x*10+c-'0', c = getchar();
return x*z;
} const int MAXN = 1000001;
int ft[MAXN], n, cnt, vis[MAXN], fa[MAXN], m, ans = 2147483647;
struct Edge{
int to, nt, f;
} edge[MAXN<<1];
struct _Edge{
int u, v, f;
IL bool operator < (_Edge b) const{
return f > b.f;
}
} _edge[MAXN]; IL void Add(RG int u, RG int v, RG int f){
edge[cnt] = (Edge){v, ft[u], f}; ft[u] = cnt++;
} IL int Find(RG int x){
return fa[x] == x ? x : Find(fa[x]);
} IL void Kruskal(){
sort(_edge + 1, _edge + m + 1);
RG int t = 0;
rep(i, 1, m){
if(t == n - 1) break;
RG int u = Find(_edge[i].u), v = Find(_edge[i].v);
if(u != v){
t++; fa[u] = v;
Add(u, v, _edge[i].f); Add(v, u, _edge[i].f);
}
}
} IL void Dfs(RG int u, RG int ans1){
if(u == n) ans = ans1;
uev(e, u){
RG int v = edge[e].to;
if(vis[v]) continue;
vis[v] = 1;
RG int f = min(ans1, edge[e].f);
Dfs(v, f);
}
} int main(){
RG int T = Get();
rep(t, 1, T){
n = Get(); m = Get();
mem(ft, -1); ans = 2147483647; cnt = 0;
rep(i, 1, m){
RG int u = Get(), v = Get(), f = Get();
_edge[i] = (_Edge){u, v, f};
}
rep(i, 1, n) fa[i] = i;
Kruskal();
mem(vis, 0); vis[1] = 1;
Dfs(1, ans);
printf("Scenario #%d:\n%d\n\n", t, ans);
}
return 0;
}

Heavy Transportation POJ - 1797的更多相关文章

  1. Heavy Transportation POJ 1797 最短路变形

    Heavy Transportation POJ 1797 最短路变形 题意 原题链接 题意大体就是说在一个地图上,有n个城市,编号从1 2 3 ... n,m条路,每条路都有相应的承重能力,然后让你 ...

  2. kuangbin专题专题四 Heavy Transportation POJ - 1797

    题目链接:https://vjudge.net/problem/POJ-1797 思路:请参考我列出的另一个题目,和这个题目要求的值相反,另一个清楚后,这个写的解释就明白了. 另一个类似题目的博客:h ...

  3. POJ 1797 Heavy Transportation (Dijkstra变形)

    F - Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & ...

  4. POJ 1797 Heavy Transportation

    题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

  5. poj 1797 Heavy Transportation(最大生成树)

    poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...

  6. POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)

    POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...

  7. POJ.1797 Heavy Transportation (Dijkstra变形)

    POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...

  8. POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】

    Heavy Transportation Time Limit:3000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64 ...

  9. POJ 1797 Heavy Transportation SPFA变形

    原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K T ...

随机推荐

  1. Git团队协作之GitFlow & SoucceTree

    GitFlow 定义了一个围绕项目发布的严格的分支模型,仍然使用中央仓库作为开发者的交互中心 GitFlow分支 Master分支 Hotfix紧急修改 Release分支 Develop开发分支 F ...

  2. PHP执行Session与前端JS之间的关系

    <?php error_reporting(0); $path = './tmp/'; $sess_name = session_name(); echo $sess_name; $sess_i ...

  3. 《Discuz安装时候出现乱码 -- 问题解决方法》

    自我安装discuz时出现安装界面乱码的情况,跟链接所说一样,经过原作的分享,加上我自己的实验,明白了,什么时候修改/usr/local/php/etc/php.ini里面的default_chars ...

  4. MySQL数据库基础(二)(约束以及修改数据表)

    一,约束以及修改数据表 约束的作用?1.约束保证数据的完整性.一致性:2.约束分为表级约束.列级约束:3.约束类型包括:NOT NULL(非空约束).PRIMARY KEY(主键约束).UNIQUE ...

  5. iOS-UI控件优化

    一.tableView的优化 tableView作为iOS开发中使用最为频繁的控件之一,对其进行优化,对整个应用性能的提升显得至关重要.官方设计的框架中,已经包含了UITableViewCell的重用 ...

  6. OSI网络模型

    OSI中的层 功能 TCP/IP协议族 应用层         文件传输,电子邮件,文件服务,虚拟终端 TFTP,HTTP,SNMP,FTP,SMTP,DNS,Telnet 表示层         数 ...

  7. Mac下VirtualBox共享文件夹设置

    环境:CentOS7.2最小化安装 步骤: 先安装必要软件包 yum install -y gcc gcc-devel gcc-c++ gcc-c++-devel make kernel kernel ...

  8. Qt Creator 整合 python 解释器教程

    目录 1. 前言 2.前提条件 3.步骤 3.1 新建 python文件 3.2 编写 python 代码 3.3 配置 python 解释器 3.4 执行 python file 1. 前言 Pyt ...

  9. 将FTP映射至Windows

    在经常使用ftp传输文件的环境中,每次上传和下载文件都需要重新连接然后登录是非常繁琐的一件事情.我们可以将FTP空间映射到本地磁盘空间,免去输入地址以及账号.密码.方便我们日常中文件的上传和下载. 1 ...

  10. input placeholder样式

    input::-webkit-input-placeholder, textarea::-webkit-input-placeholder { color:red; } input:-moz-plac ...