RBM(Restricted Boltzman Machine,受限玻尔兹曼机)是深度学习的基础,虽然原理比较简单,但实际训练中用到了很多trick,在参考文献中,Hinton为我们披露了几个训练的细节。

第一,输入为实值向量:

当RBM的输入v是实值向量时,计算隐含层输出h的公式与二值向量是一致的,即 p(h=1|v) = sigm(b+v*w) ,注意,这个公式给出的是h=1的概率,我们真正得到的隐含层输出并不是这个概率,而是二值向量h本身,所以需要对这个概率做二值化处理,h = p(h=1|v) > randn(h)。

在得到了第一轮的隐含层输出h之后,需要重构第二轮的输入v',因为v'是实值向量,因此这里采用的计算公式是 v' = N(c+h*w') ,注意,这里得到的不再是p(v‘=1|h),而是直接计算v',因为输入变量是实值向量,不需要二值化处理。

最后,我们要计算第二轮的隐含层输出h',所用公式为 p(h'=1|v') = sigm(b+v'*w),同上,这里我们仍然需要做二值化处理,得到真正的h'。

以上是理论上的计算过程,但是在真实计算中,Hinton做了细节的处理,主要表现在:1. h是二值化的,2. v'和h'都是实值的。对于第一点,Hinton的解释是为了防止过拟合,对于第二点,Hinton的解释是为了减少噪声;

  第二,输入为二值向量:

  根据上面的分析很容易得到,仅列出公式, p(h=1|v) = sigm(b+v*w),p(v'=1|h) = sigm(c+h*w'),p(h'=1|v') = sigm(b+v'*w)。

  同样,为了防止过拟合、减少噪声,h是二值化的,而v'和h'都是实值的。

  第三,关于输出:

  RBM的输出都是二值化的向量,并且前一层的输出即是后一层的输入。

参考文献:

Krizhevsky A, Hinton G E. Using very deep autoencoders for content-based image retrieval[C]//ESANN. 2011.

RBM如何训练?的更多相关文章

  1. RBM 与 DBN 学习笔记

    2006 年,Hinton 等人基于受限波尔兹曼机(Re- stricted Boltzmann Machines, RBMs)提出的深度信念 网络(Deep Belief Networks, DBN ...

  2. 受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)

    这篇写的主要是翻译网上一篇关于受限玻尔兹曼机的tutorial,看了那篇博文之后感觉算法方面讲的很清楚,自己收获很大,这里写下来作为学习之用. 原文网址为:http://imonad.com/rbm/ ...

  3. 深度学习读书笔记之RBM(限制波尔兹曼机)

    深度学习读书笔记之RBM 声明: 1)看到其他博客如@zouxy09都有个声明,老衲也抄袭一下这个东西 2)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的 ...

  4. 深度学习方法:受限玻尔兹曼机RBM(三)模型求解,Gibbs sampling

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 接下来重点讲一下RBM模型求解 ...

  5. 深度学习方法:受限玻尔兹曼机RBM(二)网络模型

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上解上一篇RBM(一)基本概念, ...

  6. [Machine Learning & Algorithm] 神经网络基础

    目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网.人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革.要学习深度学习,那么首先要熟悉神经网络(N ...

  7. Atitit 语音识别的技术原理

    Atitit 语音识别的技术原理 1.1. 语音识别技术,也被称为自动语音识别Automatic Speech Recognition,(ASR),2 1.2. 模型目前,主流的大词汇量语音识别系统多 ...

  8. Deep learning:四十(龙星计划2013深度学习课程小总结)

    头脑一热,坐几十个小时的硬座北上去天津大学去听了门4天的深度学习课程,课程预先的计划内容见:http://cs.tju.edu.cn/web/courseIntro.html.上课老师为微软研究院的大 ...

  9. lecture15-自动编码器、语义哈希、图像检索

    Hinton第15课,本节有课外读物<Semantic Hashing>和<Using Very Deep Autoencoders for Content-Based Image ...

随机推荐

  1. 平面上给定n条线段,找出一个点,使这个点到这n条线段的距离和最小。

    题目:平面上给定n条线段,找出一个点,使这个点到这n条线段的距离和最小. 源码如下: #include <iostream> #include <string.h> #incl ...

  2. NOIP 总结

    NOIP 总结 实在不知道写什么标题 决定还是把我的noip总结贴上来,毕竟保存还是挺麻烦的. 扯淡 联赛考完有三个星期了,成绩也出了一个星期左右了. 终于还是决定动笔写一点联赛的总结. Day1 可 ...

  3. Django 学习笔记

    day 1 : 一.web 框架本质: 1.http 建立在tcp 之上:一次互通后断开,无状态,短链接 请求头: b'GET / HTTP/1.1 Host: 127.0.0.1:8080 Conn ...

  4. 【Learning】最小点覆盖(二分图匹配) 与Konig定理证明

    (附一道例题) Time Limit: 1000 ms   Memory Limit: 128 MB Description 最小点覆盖是指在二分图中,用最小的点集覆盖所有的边.当然,一个二分图的最小 ...

  5. Elasticsearch安装使用

    在网上有很多那种ES步骤和问题的解决 方案的,不过没有一个详细的整合,和问题的梳理:我就想着闲暇之余,来记录一下自己安装的过程以及碰到的问题和心得:有什么不对的和问题希望及时拍砖. 第一步:环境 li ...

  6. 安装VMware Workstation提示the msi failed的解决办法

    有朋友安装VMware Workstation时出现报错,提示the msi failed等信息,原来他以前安装过绿色版.优化版的VM,但删掉后重装VM就会有这样的报错提示,如果你也遇到了相同的困扰, ...

  7. 浏览器兼容的JS写法总结

    一.元素查找问题 1. document.all[name]   (1)现有问题:Firefox不支持document.all[name]   (2)解决方法:使用getElementsByName( ...

  8. .net mvc web api 返回 json 内容时过滤值为null的属性

    1.响应内容(过滤前) {"msg":"初始化成功!","code":"","success":tr ...

  9. 给VMware的虚拟机设置静态地址

    最近在VMware 上运行新版本Linux 虚拟机集群,在给每个虚拟机设置静态IP时,遇到一些挫折,新版本有些变动,故记录下来备用. Centos版本信息7.4.1708: Ubuntu版本信息17. ...

  10. sqlserver中select造成死锁

    死锁过程: select语句使用非聚族索引查询产量信息,会对非聚族索引添加共享锁,由于非聚族索引上没有select的全部数据列,(所以会有书签查找出现,)需要查询产量表.查询产量表时,需要对产量表数据 ...