Basic Concepts

Terms

Descriptive Statistics
  • Describes the important aspects of large data sets.

    • 统计
    • 概率
    • 分布
Inferential statistics
  • Involves making forecasts, estimates, or judgments about a larger group from the smaller group.

    • 预测
    • 估计
    • 判断

Measurement scales

考点:
  • 给描述, 判断是哪种尺度
  • 给尺度, 判断孰强孰弱

Frequency distribution

Central Tendency (第一维度,中心趋势)

Mean

Calculation
  • Arithmetic mean (算术平均)

    • Population Mean

    • Sample Mean
  • Geometric mean (几何平均)
  • Harmonic mean (调和平均, I级考试不考)

  • Weighted mean (加权平均)

    • 样本均值中相当于权重都是1/n, 而weighted mean就是不等权重(w1,w2,...wn).
Properties (性质)
  • Arithmetic mean : 单期收益率的表现

    • focus on average single-period performance
    • sensitive to extreme values
  • Geometric mean: 多期收益率的表现

    • focus on multi-period performance
  • Weighted mean: 多用于计算期望值 (算期望就是算加权平均)
    • userd to calculate the portfolio return/expected value based on probabilities
  • Harmonic Mean <= Geometric Mean <= Arithmetic Mean
  • Median 中位数 与 Mode 众数

    • 例: 一组数, 1,1,2,4,8.
    • median: 一共有五个数, 中间的数是2, 所以median是2. 若这个数组是1,2,4,8. 中位数则是(2+4)/2 = 3.
    • mode : 1出现了两次, 所以众数是1.

Quantile (分位点) **

Definition
  • A value at or below which a stated fraction of the data lies.

    • Quantiles 四分位点
    • Quintiles 五分位点
    • Deciles 十分位点
    • Percentiles 百分位点
Calculation
  • Step 1: formula for location of data in ascending order (必须先把所有数据从小到大排列)
  • Step 2: 用公式计算
  • 例: for data with 17 observations, find out the location of 3rd quintile.

    • 注:      1. value 中10和11的顺序写错了, 数值应该是要按顺序排列的.
      • 2. 如果要计算3rd quintile这个位置上的值的话, 应该是(20+23)/2.    
考点
  • 描述

    • 例: 第一个四分位点 --> 有25%的数小于第一个四分位点(因数据是ascending order排列的,所以是小于).
  • 计算
    • Ly = (n+1)y/100 (算location)
    • 算value (算特定分位点的数值)

金融有风险, 风险有不确定性, 所以用离散程度来度量风险, 方差或者标准差就是用来度量离散程度的;

金融中的收益用均值 mean 来度量.

Risk <-- uncertainty <-- dispersion <-- variance, standard deviation

Dispersion (第二维度,离散程度,即偏离均值的程度)

Absolute dispersion (绝对离散程度)

Range (范围)
  • Maximum Value - Minimum Value
Mean Absolute Deviation (MAD, 均值绝对偏差)
  • MAD <= 西格玛
Variance (方差)
  • MAD是绝对值, 不好计算,所以平方之后就引入了方差.
  • Population 总体
  • Sample 样本

Standard deviation (标准差, 把方差开根号)
  • Population 总体

  • Sample 样本

    • n-1 是为了满足无偏性或者自由度

Relative dispersion (相对离散程度) ***

Coefficient of variation (CV, 变异系数)
  • 每赚一块钱所承担的风险
  • Calculation
    • s: 样本标准差 (代表风险); x拔: 样本均值(代表收益)
  • Characteristics

    • CV has no units of measurement
    • a measure of risk per unit of mean return
    • the lower the better
Sharpe ratio (夏普比率)
  • 每承担单位风险所获得的超额收益率
  • Calculation
  • Characteristics

    • Sharpe ratio has no units of measurement
    • a measure of exccess return per unit of risk
    • the higher the better
考点
  • 计算

    • CV
    • Sharpe ratio
  • 描述

    • CV: 每赚一块钱所承担的风险
    • Sharpe ratio: 每承担单位风险所获得的超额收益
  • 性质
    • 变异系数CV越小越好
    • Sharpe ratio越大越好
Chebyshev's inequality (切比雪夫不等式)
  • 概念

    • For any distribution with finite variance, the minimum percentage of observations that lie within k standard deviation of the mean would be 1-1/k*k, given k>1.
    • 对任何一组观测值, 个休落在均值周围k个标准差之内的概率不小于1-1/k*k, 对任意k>1.
  • 例题
考点
  • 已知k, 需要计算概率1-1/k*k
  • 已知概率, 需要反算出k, 再算出区间
  • 已知区间, 需要计算k, 再算出概率

Skewness (第三维度,偏度) ***

肥尾: 取到极端值的概率较大

Kurtosis (第四维度,峰度) **

正态分布的峰度定义为3.

T-分布有特殊, 是低峰肥尾. ? 哪一章提到?

Z-分布?

QM3_Statistics Concepts and Market Returns的更多相关文章

  1. Statistical Concepts and Market Returns

    Statistical Concepts and Market Returns Categories of statistics Descriptive statistics: used to sum ...

  2. AIMR 固定收益推荐读物

    目录 AIMR Suggested Fixed-Income Readings I. Perspectives on Interest Rates and Pricing of Traditional ...

  3. SVD分解.潜语义分析.PythonCode

    原文链接:http://www.cnblogs.com/appler/archive/2012/02/02/2335886.html 原始英文链接:http://www.puffinwarellc.c ...

  4. 潜在语义分析Latent semantic analysis note(LSA)原理及代码

    文章引用:http://blog.sina.com.cn/s/blog_62a9902f0101cjl3.html Latent Semantic Analysis (LSA)也被称为Latent S ...

  5. Quantitative Startegies for Achieving Alpha(二)

    Chapter 3 The Day-To-Day Drivers Of Stock Market Returns Summary: (1) Earning growth is the primary ...

  6. An Introduction to Stock Market Data Analysis with R (Part 1)

    Around September of 2016 I wrote two articles on using Python for accessing, visualizing, and evalua ...

  7. (二)ROS系统架构及概念 ROS Architecture and Concepts 以Kinetic为主更新 附课件PPT

    第2章 ROS系统架构及概念 ROS Architecture and Concepts PPT说明: 正文用白色,命令或代码用黄色,右下角为对应中文译著页码. 这一章需要掌握ROS文件系统,运行图级 ...

  8. (转) Using the latest advancements in AI to predict stock market movements

    Using the latest advancements in AI to predict stock market movements 2019-01-13 21:31:18 This blog ...

  9. jQuery学习--Code Organization Concepts

    jQuery官方文档:  http://learn.jquery.com/code-organization/concepts/ Code Organization Concepts(代码组织概念) ...

随机推荐

  1. SharePoint 搜索爬网第三方网站配置

    介绍:SharePoint的搜索着实强大,而且最近用到SharePoint搜索第三方爬网,感觉收获挺大,而且网上资料没找到太多类似的,就小记录一下,分享给大家. 首先,我自己写了一个net页面,里面读 ...

  2. SharePoint 解决方案手动打包简单介绍

    介绍:在使用SharePoint中,我们经常需要做的就是打包解决方案,我们来介绍下SharePoint解决方案的手动部署,我自己觉得,解决方案是SharePoint中非常好的一个功能,部署和使用起来相 ...

  3. oo修仙之路

    写在前面: 之前听说过oo这门课的威力,计院全体修仙现场的图也被转了不知多少遍,然而自己不亲身经历就不知这门课的难度所在.每次debug时耳边总会想起三国杀里面周瑜的话"挣扎吧,在血和暗的深 ...

  4. PowerBI开发 第十篇:R 脚本

    R是一种专门用于数据分析和统计的脚本语言,广泛应用在每一个需要统计和数据分析的领域.PowerBI支持R脚本,只不过,PowerBI Desktop默认没有安装R.在使用R脚本之前,必须向PowerB ...

  5. JVM(HotSpot) 7种垃圾收集器的特点及使用场景

    这里讨论的收集器基于JDK1.7Update 14之后的HotSpot虚拟机,这个虚拟机包含的所有收集器如下图3-5所示: 上图展示了7种作用于不同分代的收集器,如果两个收集器之间存在连线,就说明它们 ...

  6. JTA 分布式事务

    什么是JTA - 2009-07-25 18:31:06|  分类: 技术文章|举报|字号 订阅     什么是JTA? Java Transaction API(Java事务API) (JTA)Ja ...

  7. java核心卷轴之集合

    1. Iterator 1.1 注意事项 接口的remove方法将删除上次调用next方式时返回的对象,即:remove之前,必须有next(先获取,再删除). 1.2 例一:删除字符串集合中的第一个 ...

  8. linux快速清空文件 比如log日志

    linux中快速清空文件内容的几种方法这篇文章主要介绍了linux中快速清空文件内容的几种方法,需要的朋友可以参考下 权限要求: 至少执行用户对该文件有写的权限 --w------- 1 QA_Dep ...

  9. Kali Linux 工具使用中文说明书

    From: https://www.hackfun.org/kali-tools/kali-tools-zh.html 英文版地址:http://tools.kali.org/ 信息收集 accche ...

  10. vfd折腾(一)

    从一开始驱动一块翻出来的液晶显示屏就想做一个电子时钟,偶然翻到了vfd(Vacuum Fluorescent Display的缩写,意为真空荧光显示屏). 此后就走上了不归路