首先都得导模块。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame

  一、绘制单线图

  1,直线图

x=[1,2,3,4,5]
y=[2,4,6,8,10]
plt.plot(x,y)

  2,抛物线

x = np.arange(-np.pi,np.pi,0.2)
y = x**2
plt.plot(x,y)

  3,正弦图

x = np.arange(-np.pi,np.pi,0.2)
y = np.cos(x)
plt.plot(x,y)

  这里得到图形取决于x跟y的关系

  二、绘制多个曲线的图

  1,连续调用多次plot函数

plt.plot(x,y)
plt.plot(x+3,y+3)

  2,也可以在一个plot函数中传入多对x,y值

plt.plot(x,y,x+10,y+10)

  3,将多个曲线绘制在一个table区域中:对象形式创建表图

a=plt.subplot(row,col,loc)创建曲线图对象
a.plot(x,y)
ax1 = plt.subplot(2,2,1)
ax1.plot(x,y)
ax1.grid()
ax2 = plt.subplot(2,2,2)
ax2.plot(x,y)
ax3 = plt.subplot(2,2,3)
ax3.plot(x,y)
ax4 = plt.subplot(2,2,4)
ax4.plot(x,y)

  三、plt的一些样式设置

  1,设置网格线,plt.grid()

参数:
axis:控制方向
color:支持十六进制颜色
linestyle:线的形状
alpha:透明度 plt.grid(axis='both')
plt.plot(x,y)

  2,坐标轴界限

axis方法设置x,y轴刻度值的范围
plt.axis([xmin,xmax,ymin,ymax]) plt.axis([-6,6,-2,2])
plt.plot(x,y)

  通过设置plt.axis('off')可以把坐标轴刻度给关闭,我们就只会看到图,而看不到刻度

  3,设置画布比例

plt.figure(figsize=(a,b)) a:x刻度比例 b:y刻度比例 (2:1)表示x刻度显示为y刻度显示的2倍

plt.figure(figsize=(8,18))
plt.plot(x,y)

  4,设置x轴,y轴,图片的名称

plt.xlabel('xxx')
plt.ylabel('yyy')
plt.title('ttt')
plt.plot(x,y)

  5,设置图例

  5.1 分别在plot函数中添加label参数,在调用plt.legend()方法显示

plt.plot(x,y,label='aaa')
plt.plot(x+3,y+3,label='bbb')
plt.legend()

  5.2 直接在legend()方法中传入字符串列表

plt.plot(x,y,x+3,y+3)
plt.legend(['aaa','bbb'])

  5.3 还可以设置legend()方法的参数调整图例的位置和显示样式

loc参数用于设置图例标签的位置,一般在legend函数内

ncol控制图例中有几列,在legend中设置ncol
plt.plot(x,y,x+3,y+3)
plt.legend(['aaa','bbb'],loc=3,ncol=2)

  6,保存图片

使用figure对象的savefig函数来保存图片
fig = plt.figure()---必须放置在绘图操作之前
figure.savefig的参数选项
filename:含有文件路径的字符串或Python的文件型对象。图像格式由文件扩展名推断得出,例如,.pdf推断出PDF,.png推断出PNG (“png”、“pdf”、“svg”、“ps”、“eps”……)
dpi:图像分辨率(每英寸点数),默认为100
facecolor ,打开保存图片查看 图像的背景色,默认为“w”(白色) fig = plt.figure()
plt.plot(x,y,x+3,y+3)
plt.legend(['aaa','bbb'],loc=3,ncol=2)
fig.savefig('./img.png',dpi=500)

  四、plot的参数设置

color或c:颜色,如‘r’或‘red’红色,‘g’绿色;也可以是十六进制,如'#eeefff';还可以RGB元祖,(0.2,0.3,0.4),值只能是0到1
alpha透明度
参数linestyle或ls线型
参数linewidth或lw线宽
marker点型
markersize点的大小

  五、直方图

是一个特殊的柱状图,又叫做密度图。
【直方图的参数只有一个x!!!不像条形图需要传入x,y】
plt.hist()的参数
bins :直方图的柱数,可选项,默认为10
color :指定直方图的颜色。可以是单一颜色值或颜色的序列。如果指定了多个数据集合,例如DataFrame对象,颜色序列将会设置为相同的顺序。如果未指定,将会使用一个默认的线条颜色
orientation :通过设置orientation为horizontal创建水平直方图。默认值为vertical
data=[1,2,3,2,3,1,4,5,2,2]
plt.hist(data,bins=10) #data数据时1到5,所以它会把1到5之间分成11个区域,把每个区域所包含数据的个数给统计出来

  六、条形图

- 参数:第一个参数是索引。第二个参数是数据值。第三个参数是条形的宽度
- width 纵向设置条形宽度
- height 横向设置条形高度
bar()纵向、barh()横向
data1=[2,4,1,5]
data2=[3,5,1,6]
plt.bar(data1,data2)

plt.barh(data1,data2)

  七、饼图

  饼图主要有两种,取决于第一个数据参数,首先数据的是一个列表,但列表中出现整数时,每块占比等于自身值除以所有值总和,这种情况下占比总和为1;当每个值都是0到1之间,而且总和小于等于1,那么每个的占比就是自身值,这种情况下,占比总和就不一定为1了。

  1,占比总和肯定为1的

plt.pie([2,4,6])   #表示的是2占12的比例,4占12的比例,6占12的比例

  2,占比总和不一定为1的

plt.pie([0.2,0.4,0.1])#表示0.1占10%,0.2占20%,0.4占40%

  3,属性设置

饼图阴影、分裂等属性设置
#labels参数设置每一块的标签;
#labeldistance参数设置标签距离圆心的距离(比例值)
#autopct参数设置比例值小数保留位(%.3f%%);
#pctdistance参数设置比例值文字距离圆心的距离
#explode参数设置每一块顶点距圆心的长度(比例值,列表);
#colors参数设置每一块的颜色(列表);
#shadow参数为布尔值,设置是否绘制阴影
#startangle参数设置饼图起始角度

  3.1 给每一块设置标签

arr=[2,4,6]
plt.pie(arr,labels=['a','b','c'])

  3.2 给标签设置离中心的距离

arr=[2,4,6]
plt.pie(arr,labels=['a','b','c'],labeldistance=0.5)

  3.3 数值表示每块的占比,并设置占比离中心的距离

arr=[2,4,6]
plt.pie(arr,labels=['a','b','c'],labeldistance=0.5,autopct='%.2f%%',pctdistance=0.8)

  3.4 设置每块顶点离中心的距离

arr=[2,4,6]
plt.pie(arr,labels=['a','b','c'],labeldistance=0.5,autopct='%.2f%%',pctdistance=0.8,explode=[0.2,0.4,0.3])

  八、散点图

散点图需要两个参数x,y,但此时x不是表示x轴的刻度,而是每个点的横坐标!
scatter()
x = np.random.random(size=(100))
y = np.random.random(size=(100))
plt.scatter(x,y)

  1,meshgrid()和散点图结合扩展

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np x1=np.arange(1,5,0.01)
y1=np.arange(1,5,0.01) arr1=np.meshgrid(x1,y1)[0]
arr2=np.meshgrid(x1,y1)[1] plt.scatter(arr1,arr2)

数据分析之matplotlib.pyplot模块的更多相关文章

  1. matplotlib.pyplot 导引

    matplotlib.pyplot 是采用 python 语言和使用数值数学库 numpy 数组数据的绘图库.其主要目标是用于数据的可视化显示. 输出图形组成 matplotlib.pyplot 模块 ...

  2. python matplotlib.pyplot对图像进行绘制

    imshow()是对图像进行绘制 imshow()函数格式为: matplotlib.pyplot.imshow(X, cmap=None) X: 要绘制的图像或数组. cmap: 颜色图谱(colo ...

  3. python数据分析三剑客之: matplotlib绘图模块

    matplotlib 一.Matplotlib基础知识 Matplotlib中的基本图表包括的元素 - x轴和y轴 axis 水平和垂直的轴线 - x轴和y轴刻度 tick 刻度标示坐标轴的分隔,包括 ...

  4. 数据分析之Matplotlib和机器学习基础

    一.Matplotlib基础知识 Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形. 通过 Matplotlib,开发者可以仅需 ...

  5. Matplotlib.pyplot 常用方法

    1.介绍 Matplotlib 是一个 Python 的 2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形.通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图 ...

  6. Python基础-画图:matplotlib.pyplot.scatter

    转载自博客:https://blog.csdn.net/qiu931110/article/details/68130199 matplotlib.pyplot.scatter 1.scatter函数 ...

  7. python matplotlib.pyplot画矩形图 以及plt.gca()

    plt的Rectangle参数: 第一个参数是坐标(x,y),即矩形的画图的起点坐标,这个起点坐标不是一味地从左下角开始画,而是对应整个图中坐标原点,即(0,0). 第二个参数是矩形宽度 第三个坐标是 ...

  8. Python库导入错误:ImportError: No module named matplotlib.pyplot

    在Python中导入matplotlib.pyplot时出现如下错误: 在Windows操作系统下解决办法为: 打开命令提示符(按快捷键Win+r ,输入“cmd",回车),输入以下指令即可 ...

  9. 【Python开发】使用pyplot模块绘图

    快速绘图 使用pyplot模块绘图¶ matplotlib的pyplot模块提供了和MATLAB类似的绘图API,方便用户快速绘制二维图表.我们先看一个简单的例子: 05-matplotlib/mat ...

随机推荐

  1. golang sync/atomic

    刚刚学习golang原子操作处理的时候发现github上面一个比较不错的golang学习项目 附上链接:https://github.com/polaris1119/The-Golang-Standa ...

  2. 用js制作数码时钟

    实现效果 实现效果 图片素材 图片素材 原理分析 用setInterval(fn, 1000)来循环刷新图片. 用date对象的getHours().getMinutes().getSeconds() ...

  3. MIPCache 域名升级

    一.MIPCache URL 是什么 举个例子,MIP 官网的 URL 为: https://www.mipengine.org 对应的 MIPCache 的 URL 为: https://mipca ...

  4. flask下载excel

    flask 应用的基本结构: htmlweb.py -- static -- templates 将 bootstrap.min.css 放到 static 文件夹下,在 templates 文件夹下 ...

  5. SpringBoot进阶教程(二十九)整合Redis 发布订阅

    SUBSCRIBE, UNSUBSCRIBE 和 PUBLISH 实现了 发布/订阅消息范例,发送者 (publishers) 不用编程就可以向特定的接受者发送消息 (subscribers). Ra ...

  6. 个人简历模板web

    根据自己以前使用的简单简历表格,对其进行了web前端还原,也算对自己初步学习知识的一个小小的记录. 下面是简历预览效果,很简洁的那种: 代码中没什么太困难的地方,主要记录下自己遇到的几个小问题吧: 1 ...

  7. 工厂模式讲解, 引入Spring IOC

    目录 引入 简单工厂 抽象工厂 Spring的bean工厂 模拟Spring工厂实现 模拟IOC 引入 假设有一个司机, 需要到某个城市, 于是我们给他一辆汽车 public class Demo { ...

  8. 号称“新至强,可拓展,赢当下”的Xeon可拓展处理器有多逆天?

    目前企业数据中心正在发生重大变化,许多企业正在经历基于在线服务和数据的广泛转型.他们将这些数据用于功能强大的人工智能和分析应用程序,这些应用程序可以将其转化为改变业务的洞察力,然后推出可以使这些洞察力 ...

  9. SuperMap iObject入门开发系列之三管线系统标注

    本文是一位好友“托马斯”授权给我来发表的,介绍都是他的研究成果,在此,非常感谢. 管线系统会涉及到一些坐标标注,属性标注,提供给用户查询获取其需要的信息,这期的文章介绍的是基于超图iObject开发的 ...

  10. cesium 之图层管理器篇(附源码下载)

    前言 cesium 官网的api文档介绍地址cesium官网api,里面详细的介绍 cesium 各个类的介绍,还有就是在线例子:cesium 官网在线例子,这个也是学习 cesium 的好素材. 内 ...