https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

官方推荐的一篇教程

Tensors

#Construct a 5x3 matrix, uninitialized:
x = torch.empty(5, 3) #Construct a randomly initialized matrix:
x = torch.rand(5, 3) # Construct a matrix filled zeros and of dtype long:
x = torch.zeros(5, 3, dtype=torch.long) # Construct a tensor directly from data:
x = torch.tensor([5.5, 3]) # create a tensor based on an existing tensor. These methods will reuse properties of the input tensor, e.g. dtype, unless new values are provided by user
x = x.new_ones(5, 3, dtype=torch.double) # new_* methods take in sizes
print(x)
x = torch.randn_like(x, dtype=torch.float) # override dtype! #沿用了x已有的属性,只是修改dtype
print(x) # result has the same size

tensor操作的语法有很多写法,以加法为例

#1
x = x.new_ones(5, 3, dtype=torch.double)
y = torch.rand(5, 3)
print(x + y) #2
print(torch.add(x, y)) #3
result = torch.empty(5, 3)
torch.add(x, y, out=result)
print(result) ##注意以_做后缀的方法,都会改变原始的变量
#4 Any operation that mutates a tensor in-place is post-fixed with an _. For example: x.copy_(y), x.t_(), will change x.
# adds x to y
y.add_(x)
print(y)

改变tensor的size,使用torch.view:

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # the size -1 is inferred from other dimensions
print(x.size(), y.size(), z.size()) 输出如下:
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

numpy array和torch tensor的相互转换

  • torch tensor转换为numpy array
a = torch.ones(5)
print(a)
输出tensor([1., 1., 1., 1., 1.]) #torch tensor--->numpy array
b = a.numpy()
print(b)
输出[1. 1. 1. 1. 1.] #注意!:a,b同时发生了变化
a.add_(1)
print(a)
print(b)
输出tensor([2., 2., 2., 2., 2.])
[2. 2. 2. 2. 2.]
  • numpy array转换为torch tensor
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)

所有的cpu上的tensor,除了chartensor,都支持和numpy之间的互相转换.

All the Tensors on the CPU except a CharTensor support converting to NumPy and back.

CUDA Tensors

Tensors can be moved onto any device using the .to method.

#let us run this cell only if CUDA is available
#We will use ``torch.device`` objects to move tensors in and out of GPU
if torch.cuda.is_available():
device = torch.device("cuda") # a CUDA device object
y = torch.ones_like(x, device=device) # directly create a tensor on GPU
x = x.to(device) # or just use strings ``.to("cuda")``
z = x + y
print(z)
print(z.to("cpu", torch.double)) # ``.to`` can also change dtype together! --->
tensor([0.6635], device='cuda:0')
tensor([0.6635], dtype=torch.float64)

AUTOGRAD

The autograd package provides automatic differentiation for all operations on Tensors. It is a define-by-run framework, which means that your backprop is defined by how your code is run, and that every single iteration can be different.

Generally speaking, torch.autograd is an engine for computing vector-Jacobian product

.requires_grad属性设为true,则可以追踪tensor上的所有操作(比如加减乘除)

torch.Tensor is the central class of the package. If you set its attribute .requires_grad as True, it starts to track all operations on it. When you finish your computation you can call .backward() and have all the gradients computed automatically. The gradient for this tensor will be accumulated into .grad attribute.

autograd包实现自动的求解梯度.

神经网络

torch.nn包可以用来构建神经网络.

nn依赖autogard来不断地更新model中各层的参数. nn.Module包含layers,forward方法.

典型的神经网络的训练过程如下:

  • 定义一个神经网络,含learnable parameters或者叫weights
  • 对数据集的所有数据作为Input输入网络
  • 计算loss
  • 反向传播计算weights的梯度
  • 更新weights,一个典型的简单规则:weight = weight - learning_rate * gradient

定义网络

import torch
import torch.nn as nn
import torch.nn.functional as F class Net(nn.Module): def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5) #输入是1个矩阵,输出6个矩阵,filter是5*5矩阵.即卷积层1使用6个filter.
self.conv2 = nn.Conv2d(6, 16, 5) #输入是6个矩阵,输出16个矩阵,filter是5*5矩阵.即卷积层2使用16个filter.
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120) #全连接层,fc=fullconnect 作用是分类
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10) def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features net = Net()
print(net) 输出如下:
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)

你只需要定义forward函数,backward函数(即计算梯度的函数)是autograd包自动定义的.你可以在forward函数里使用任何tensor操作.

model的参数获取.

params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight 输出如下:
10
torch.Size([6, 1, 5, 5])

以MNIST识别为例,输入图像为3232.我们用一个随机的3232输入演示一下.

input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out) 输出如下:
tensor([[ 0.0659, -0.0456, 0.1248, -0.1571, -0.0991, -0.0494, 0.0046, -0.0767,
-0.0345, 0.1010]], grad_fn=<AddmmBackward>) #清空所有的parameter的gradient buffer.用随机的梯度反向传播。
#Zero the gradient buffers of all parameters and backprops with random gradients:
net.zero_grad()
out.backward(torch.randn(1, 10))

回忆一下部分概念

  • torch.Tensor - A multi-dimensional array with support for autograd operations like backward(). Also holds the gradient w.r.t. the tensor.
  • nn.Module - Neural network module. Convenient way of encapsulating parameters, with helpers for moving them to GPU, exporting, loading, etc.
  • nn.Parameter - A kind of Tensor, that is automatically registered as a parameter when assigned as an attribute to a Module.
  • autograd.Function - Implements forward and backward definitions of an autograd operation. Every Tensor operation creates at least a single Function node that connects to functions that created a Tensor and encodes its history.

损失函数

nn package有好几种损失函数.以nn.MSELoss为例

output = net(input)
target = torch.randn(10) # a dummy target, for example
target = target.view(1, -1) # make it the same shape as output
criterion = nn.MSELoss() loss = criterion(output, target)
print(loss) 输出
tensor(0.6918, grad_fn=<MseLossBackward>)

Now, if you follow loss in the backward direction, using its .grad_fn attribute, you will see a graph of computations that looks like this:

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d

-> view -> linear -> relu -> linear -> relu -> linear

-> MSELoss

-> loss

print(loss.grad_fn)  # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
输出如下:
<MseLossBackward object at 0x7ff3406e1be0>
<AddmmBackward object at 0x7ff3406e1da0>
<AccumulateGrad object at 0x7ff3406e1da0>

反向传播

调用loss.backward()重新计算梯度

#首先清空现有的gradient buffer
net.zero_grad() # zeroes the gradient buffers of all parameters print('conv1.bias.grad before backward')
print(net.conv1.bias.grad) loss.backward() print('conv1.bias.grad after backward')
print(net.conv1.bias.grad) 输出如下:
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([-0.0080, 0.0043, -0.0006, 0.0142, -0.0017, -0.0082])

更新权重

最常见的是使用随机梯度下降法更新权重:

weight = weight - learning_rate * gradient

简单实现如下

learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)

torch.optim包封装了各种各样的优化方法, SGD, Nesterov-SGD, Adam, RMSProp等等.

import torch.optim as optim

# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01) # in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update

训练一个分类器

并行计算

pytorch深度学习60分钟闪电战的更多相关文章

  1. 【PyTorch深度学习60分钟快速入门 】Part1:PyTorch是什么?

      0x00 PyTorch是什么? PyTorch是一个基于Python的科学计算工具包,它主要面向两种场景: 用于替代NumPy,可以使用GPU的计算力 一种深度学习研究平台,可以提供最大的灵活性 ...

  2. 【PyTorch深度学习60分钟快速入门 】Part4:训练一个分类器

      太棒啦!到目前为止,你已经了解了如何定义神经网络.计算损失,以及更新网络权重.不过,现在你可能会思考以下几个方面: 0x01 数据集 通常,当你需要处理图像.文本.音频或视频数据时,你可以使用标准 ...

  3. 【PyTorch深度学习60分钟快速入门 】Part5:数据并行化

      在本节中,我们将学习如何利用DataParallel使用多个GPU. 在PyTorch中使用多个GPU非常容易,你可以使用下面代码将模型放在GPU上: model.gpu() 然后,你可以将所有张 ...

  4. 【PyTorch深度学习60分钟快速入门 】Part3:神经网络

      神经网络可以通过使用torch.nn包来构建. 既然你已经了解了autograd,而nn依赖于autograd来定义模型并对其求微分.一个nn.Module包含多个网络层,以及一个返回输出的方法f ...

  5. 【PyTorch深度学习60分钟快速入门 】Part0:系列介绍

      说明:本系列教程翻译自PyTorch官方教程<Deep Learning with PyTorch: A 60 Minute Blitz>,基于PyTorch 0.3.0.post4 ...

  6. 【PyTorch深度学习60分钟快速入门 】Part2:Autograd自动化微分

      在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的 ...

  7. [PyTorch入门之60分钟入门闪击战]之入门

    深度学习60分钟入门 来源于这里. 本文目标: 在高层次上理解PyTorch的Tensor库和神经网络 训练一个小型的图形分类神经网络 本文示例运行在ipython中. 什么是PyTorch PyTo ...

  8. 对比学习:《深度学习之Pytorch》《PyTorch深度学习实战》+代码

    PyTorch是一个基于Python的深度学习平台,该平台简单易用上手快,从计算机视觉.自然语言处理再到强化学习,PyTorch的功能强大,支持PyTorch的工具包有用于自然语言处理的Allen N ...

  9. PyTorch深度学习实践——反向传播

    反向传播 课程来源:PyTorch深度学习实践--河北工业大学 <PyTorch深度学习实践>完结合集_哔哩哔哩_bilibili 目录 反向传播 笔记 作业 笔记 在之前课程中介绍的线性 ...

随机推荐

  1. python环境下实现OrangePi Zero寄存器访问及GPIO控制

    最近入手OrangePi Zero一块,程序上需要使用板子上自带的LED灯,在网上一查,不得不说OPi的支持跟树莓派无法相比.自己摸索了一下,实现简单的GPIO控制方法,作者的Zero安装的是Armb ...

  2. 将wiki人脸数据集的性别信息提取出来制作标签

    import scipy.io as scio dataFile = 'D:\\Users\\a\\Documents\\Tencent Files\\178026882\\FileRecv\\wik ...

  3. kali下安装截图软件

    安装截图软件 1.下载安装python-xlib apt-get install python-xlib 2.下载截图软件包 wget http://packages.linuxdeepin.com/ ...

  4. 浅谈surging服务引擎中的rabbitmq组件和容器化部署

    1.前言 上个星期完成了surging 的0.9.0.1 更新工作,此版本通过nuget下载引擎组件,下载后,无需通过代码build集成,引擎会通过Sidecar模式自动扫描装配异构组件来构建服务引擎 ...

  5. IOT高性能服务器实现之路

    市场动态 物联网市场在2018年第一季度/第二季度出现了意想不到的加速,并将使用的物联网设备总数提升至7B.这是IoT Analytics最新“ 物联网和短期展望状态 ”更新中的众多发现之一. 全面的 ...

  6. Vue之生命周期函数和钩子函数详解

    在学习vue几天后,感觉现在还停留在初级阶段,虽然知道怎么和后端做数据交互,但是对对vue的生命周期不甚了解.只知道简单的使用,而不知道为什么,这对后面的踩坑是相当不利的.因为我们有时候会在几个钩子函 ...

  7. Android开发:文本控件详解——EditText(一)基本属性

    一.简单实例: EditText输入的文字样式部分的属性,基本都是和TextView中的属性一样. 除此之外,EditText还有自己独有的属性. 二.基本属性: hint  输入框显示的提示文本  ...

  8. Python的re模块

    什么是re模块,re模块有什么作用? re模块是Python提供的一个正则表达式相关的模块,主要是针对字符串进行模糊匹配,所以在字符串匹配这一功能上,re相当专业. 什么是模糊匹配? 之前的学习字符串 ...

  9. 从一到万的运维之路,说一说VM/Docker/Kubernetes/ServiceMesh

    摘要:本文从单机真机运营的历史讲起,逐步介绍虚拟化.容器化.Docker.Kubernetes.ServiceMesh的发展历程.并重点介绍了容器化阶段之后,各项重点技术的安装.使用.运维知识.可以说 ...

  10. 锁开销优化以及 CAS 简单说明

    锁开销优化以及 CAS 简单说明 锁 互斥锁是用来保护一个临界区,即保护一个访问共用资源的程序片段,而这些共用资源又无法同时被多个线程访问的特性.当有线程进入临界区段时,其他线程或是进程必须等待. 在 ...