题目链接:Cards

  听说这道题是染色问题的入门题,于是就去学了一下\(Burnside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题。

  由于题目中保证"任意多次洗牌都可用这\(m\)种洗牌法中的一种代替",于是有了封闭性。

  结合律显然成立。

  题目中还保证了"对每种洗牌法,都存在一种洗牌法使得能回到原状态",逆元也有了。

  只剩下一个单位元,我们手动补上。单位元就是不洗牌。

  所以所有的洗牌方案构成了一个置换群。于是就可以用$Burnside$引理了。

  这道题由于颜色有数目限制,那么就不能直接上$P\acute{o}lya$定理了。

  根据$Burnside$引理,本质不同的染色数目$ans$就是$C(f)$的平均数。于是我们可以暴力算出$C(f)$,由于是在模意义下,所以除法变为逆元。

  当然,这里的暴力方法不是指指数级的枚举,而是$dp$。因为一种方案要在一个置换下本质不变,那么在同一个循环内的位置颜色必定相等。于是把所有循环都抠出来然后暴力三维背包就可以了。

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define N 61 using namespace std;
typedef long long llg; int Sr,Sb,Sg,m,p,ans;
int nt[N],siz[N],n,f[N][N][N];
bool vis[N]; void gi(int &x){if(x>=p) x%=p;}
int mi(int a,int b){
int s=1;
while(b){
if(b&1) s=s*a,gi(s);
a=a*a,gi(a); b>>=1;
}
return s;
} int work(){
int tol=0;
for(int i=1;i<=n;i++) vis[i]=0;
for(int i=1;i<=n;i++)
if(!vis[i]){
siz[++tol]=0;
for(int j=i;!vis[j];j=nt[j]) vis[j]=1,siz[tol]++;
}
for(int r=0;r<=Sr;r++)
for(int b=0;b<=Sb;b++)
for(int g=0;g<=Sg;g++)
f[r][b][g]=0;
f[0][0][0]=1;
for(int i=1;i<=tol;i++)
for(int r=Sr;r>=0;r--)
for(int b=Sb;b>=0;b--)
for(int g=Sg;g>=0;g--){
if(r>=siz[i]) f[r][b][g]+=f[r-siz[i]][b][g];
if(b>=siz[i]) f[r][b][g]+=f[r][b-siz[i]][g];
if(g>=siz[i]) f[r][b][g]+=f[r][b][g-siz[i]];
gi(f[r][b][g]);
}
return f[Sr][Sb][Sg];
} int main(){
File("a");
scanf("%d %d %d %d %d",&Sr,&Sb,&Sg,&m,&p);
n=Sr+Sb+Sg;
for(int i=1;i<=n;i++) nt[i]=i; ans=work();
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++) scanf("%d",&nt[j]);
ans+=work(); gi(ans);
}
ans*=mi(m+1,p-2); gi(ans);
printf("%d",ans);
return 0;
}

BZOJ 1004 【HNOI2008】 Cards的更多相关文章

  1. 【BZOJ】【1004】【HNOI2008】Cards

    Burnside/Polya+背包DP 这道题目是等价类计数裸题吧……>_> 题解:http://m.blog.csdn.net/blog/njlcazl_11109/8316340 啊其 ...

  2. 【HNOI2008】Cards BZOJ 1004

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目 前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张 ...

  3. BZOJ 1006 【HNOI2008】 神奇的国度

    题目链接:神奇的国度 一篇论文题--神奇的弦图,神奇的MCS-- 感觉我没有什么需要多说的,这里简单介绍一下MCS: 我们给每个点记录一个权值,从后往前依次确定完美消除序列中的点,每次选择权值最大的一 ...

  4. BZOJ 1009 【HNOI2008】 GT考试

    Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0< ...

  5. BZOJ 1010 【HNOI2008】 玩具装箱toy

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  6. 动态规划(斜率优化):BZOJ 1010 【HNOI2008】 玩具装箱

    玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8218  Solved: 3233[Submit] Description P 教授要去 ...

  7. 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP

    题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...

  8. BZOJ 1854 【Scoi2010】 游戏

    Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性 ...

  9. 【BZOJ1010】【HNOI2008】玩具装箱(斜率优化,动态规划)

    [BZOJ1010][HNOI2008]玩具装箱 题面 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...

随机推荐

  1. 【分布式】Zookeeper应用场景

    一.前言 在上一篇博客已经介绍了Zookeeper开源客户端的简单实用,本篇讲解Zookeeper的应用场景. 二.典型应用场景 Zookeeper是一个高可用的分布式数据管理和协调框架,并且能够很好 ...

  2. Linux 系统命令笔记

    前言 翻出N年前学习笔记,感觉还有点用,放到博客备忘,自己查看用. 一. 系统命令笔记 1.系统 % /etc/issue           # 查看操作系统版本  %          # 观察系 ...

  3. JavaScript : 零基础打造自己的类库

    写作不易,转载请注明出处,谢谢. 文章类别:Javascript基础(面向初学者) 前言 在之前的章节中,我们已经不依赖jQuery,单纯地用JavaScript封装了很多方法,这个时候,你一定会想, ...

  4. 背水一战 Windows 10 (11) - 资源: CustomResource, ResourceDictionary, 加载外部的 ResourceDictionary 文件

    [源码下载] 背水一战 Windows 10 (11) - 资源: CustomResource, ResourceDictionary, 加载外部的 ResourceDictionary 文件 作者 ...

  5. POI操作Excel

    POI和Excel简介 JAVA中操作Excel的有两种比较主流的工具包: JXL 和 POI .jxl 只能操作Excel 95, 97, 2000也即以.xls为后缀的excel.而poi可以操作 ...

  6. openresty 前端开发入门一

    OpenResty ™ 是一个基于 Nginx 与 Lua 的高性能 Web 平台,其内部集成了大量精良的 Lua 库.第三方模块以及大多数的依赖项.用于方便地搭建能够处理超高并发.扩展性极高的动态 ...

  7. JS 传播事件、取消事件默认行为、阻止事件传播

    1.事件处理程序的返回值 通常情况下,返回值false就是告诉浏览器不要执行这个事件相关的默认操作.例如,表单提交按钮的onclick事件处理程序能通过返回false阻止浏览器提交表单,再如a标签的o ...

  8. 让IIS7.0.0.0支持 .iso .7z .torrent .apk等文件下载的设置方法

    IIS默认支持哪些MIME类型呢,我们可以这样查看:打开IIS管理器(计算机--管理--服务和应用程序--Internet信息服务(IIS)管理器:或者Win+R,输入inetmgr,Enter),在 ...

  9. sql case when...then...else...end 选择判断

    达到的需求为: 吓数收回日期为空:当接单日期不等于空和当天减接单日期大于3天时,为1,否则为0:当接单日期为空.最大发织交期不等于空和当天减去最大发织交期大于3天时,为1,否则为0:当接单日期和发织交 ...

  10. iOS -- 轮播图

    UIScrollView + 多张 ImageView 实现轮播 实现原理: 将所有图片的名字储存在数组 imageAry 中,imageAry 的元素个数为 num,在 scrollView 上添加 ...