BZOJ 1004 【HNOI2008】 Cards
题目链接:Cards
听说这道题是染色问题的入门题,于是就去学了一下\(Burnside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题。
由于题目中保证"任意多次洗牌都可用这\(m\)种洗牌法中的一种代替",于是有了封闭性。
结合律显然成立。
题目中还保证了"对每种洗牌法,都存在一种洗牌法使得能回到原状态",逆元也有了。
只剩下一个单位元,我们手动补上。单位元就是不洗牌。
所以所有的洗牌方案构成了一个置换群。于是就可以用$Burnside$引理了。
这道题由于颜色有数目限制,那么就不能直接上$P\acute{o}lya$定理了。
根据$Burnside$引理,本质不同的染色数目$ans$就是$C(f)$的平均数。于是我们可以暴力算出$C(f)$,由于是在模意义下,所以除法变为逆元。
当然,这里的暴力方法不是指指数级的枚举,而是$dp$。因为一种方案要在一个置换下本质不变,那么在同一个循环内的位置颜色必定相等。于是把所有循环都抠出来然后暴力三维背包就可以了。
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define N 61 using namespace std;
typedef long long llg; int Sr,Sb,Sg,m,p,ans;
int nt[N],siz[N],n,f[N][N][N];
bool vis[N]; void gi(int &x){if(x>=p) x%=p;}
int mi(int a,int b){
int s=1;
while(b){
if(b&1) s=s*a,gi(s);
a=a*a,gi(a); b>>=1;
}
return s;
} int work(){
int tol=0;
for(int i=1;i<=n;i++) vis[i]=0;
for(int i=1;i<=n;i++)
if(!vis[i]){
siz[++tol]=0;
for(int j=i;!vis[j];j=nt[j]) vis[j]=1,siz[tol]++;
}
for(int r=0;r<=Sr;r++)
for(int b=0;b<=Sb;b++)
for(int g=0;g<=Sg;g++)
f[r][b][g]=0;
f[0][0][0]=1;
for(int i=1;i<=tol;i++)
for(int r=Sr;r>=0;r--)
for(int b=Sb;b>=0;b--)
for(int g=Sg;g>=0;g--){
if(r>=siz[i]) f[r][b][g]+=f[r-siz[i]][b][g];
if(b>=siz[i]) f[r][b][g]+=f[r][b-siz[i]][g];
if(g>=siz[i]) f[r][b][g]+=f[r][b][g-siz[i]];
gi(f[r][b][g]);
}
return f[Sr][Sb][Sg];
} int main(){
File("a");
scanf("%d %d %d %d %d",&Sr,&Sb,&Sg,&m,&p);
n=Sr+Sb+Sg;
for(int i=1;i<=n;i++) nt[i]=i; ans=work();
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++) scanf("%d",&nt[j]);
ans+=work(); gi(ans);
}
ans*=mi(m+1,p-2); gi(ans);
printf("%d",ans);
return 0;
}
BZOJ 1004 【HNOI2008】 Cards的更多相关文章
- 【BZOJ】【1004】【HNOI2008】Cards
Burnside/Polya+背包DP 这道题目是等价类计数裸题吧……>_> 题解:http://m.blog.csdn.net/blog/njlcazl_11109/8316340 啊其 ...
- 【HNOI2008】Cards BZOJ 1004
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目 前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张 ...
- BZOJ 1006 【HNOI2008】 神奇的国度
题目链接:神奇的国度 一篇论文题--神奇的弦图,神奇的MCS-- 感觉我没有什么需要多说的,这里简单介绍一下MCS: 我们给每个点记录一个权值,从后往前依次确定完美消除序列中的点,每次选择权值最大的一 ...
- BZOJ 1009 【HNOI2008】 GT考试
Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0< ...
- BZOJ 1010 【HNOI2008】 玩具装箱toy
Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...
- 动态规划(斜率优化):BZOJ 1010 【HNOI2008】 玩具装箱
玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8218 Solved: 3233[Submit] Description P 教授要去 ...
- 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP
题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...
- BZOJ 1854 【Scoi2010】 游戏
Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当他使用某种装备时,他只能使用该装备的某一个属性 ...
- 【BZOJ1010】【HNOI2008】玩具装箱(斜率优化,动态规划)
[BZOJ1010][HNOI2008]玩具装箱 题面 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一 ...
随机推荐
- Android Activity的4种启动模式详解(示例)
转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/5233269.html 先介绍下Android对Activity的管理,Android采用Task来管理多个A ...
- 解决Asp.net Mvc中使用异步的时候HttpContext.Current为null的方法
在项目中使用异步(async await)的时候发现一个现象,HttpContext.Current为null,导致一系列的问题. 上网查了一些资料后找到了一个对象: System.Threading ...
- 浏览器加载和渲染HTML的过程(标准定义的过程以及现代浏览器的优化)
先看一下标准定义的浏览器渲染过程(网上找的): 浏览器打开网页的过程 用户第一次访问网址,浏览器向服务器发出请求,服务器返回html文件: 浏览器开始载入html代码,发现 head 标签内有一个 l ...
- 利用Vue.js实现拼图游戏
之前写过一篇<基于Vue.js的表格分页组件>的文章,主要介绍了Vue组件的编写方法,有兴趣的可以访问这里进行阅读:http://www.cnblogs.com/luozhihao/p/5 ...
- iOS 保存、读取与应用状态
固化 对于大多数iOS应用,可以将其功能总结为:提供一套界面,帮助用户管理特定的数据.在这一过程中,不同类型的对象要各司其职:模型对象负责保存数据,视图对象负责显示数据,控制器对象负责在模型对象与视图 ...
- 今天我们来认识一下JSP的九大内置对象
虽然现在基本上我们都是使用SpringMVC+AJAX进行开发了Java Web了,但是还是很有必要了解一下JSP的九大内置对象的.像request.response.session这些对象,即便使用 ...
- 【WCF】如何将WCF部署到远程服务器
一.前言 最近需要将自己写的WCF服务部署到远程服务器上,也就是公网上.宿主是IIS,在配置成功之前遇到了很多问题,问题如下: 1. WCF该怎么宿主在IIS上,为何会出现 400 Bad ...
- Web API项目中使用Area对业务进行分类管理
在之前开发的很多Web API项目中,为了方便以及快速开发,往往把整个Web API的控制器放在基目录的Controllers目录中,但随着业务越来越复杂,这样Controllers目录中的文件就增加 ...
- C#获取硬盘序列号的问题求助
具体问题是这样的:我用下面这段获取硬盘型信息的代码做成的exe文件,在机子上测试的时候,出现直接双击运行和用管理员身份运行结果不一样的情况,这个问题该怎么解决? public static Strin ...
- jqGrid合并表头
jqGrid是一款常用的制表软件,最近开发刚好用到.记录一下常用功能留着以后查找顺便发扬一下开源精神. 二级表头是一种经常会碰到的需求,很多时候为了方便查找需要在原有的表头上再加一层,区分表格不同列的 ...