芝麻HTTP:TensorFlow基础入门
本篇内容基于 Python3 TensorFlow 1.4 版本。
本节内容
本节通过最简单的示例 —— 平面拟合来说明 TensorFlow 的基本用法。
构造数据
TensorFlow 的引入方式是:
import tensorflow as tf
接下来我们构造一些随机的三维数据,然后用 TensorFlow 找到平面去拟合它,首先我们用 Numpy 生成随机三维点,其中变量 x 代表三维点的 (x, y) 坐标,是一个 2×100 的矩阵,即 100 个 (x, y),然后变量 y 代表三位点的 z 坐标,我们用 Numpy 来生成这些随机的点:
import numpy as np x_data = np.float32(np.random.rand(, )) y_data = np.dot([0.300, 0.200], x_data) + 0.400 print(x_data) print(y_data)
这里利用 Numpy 的 random 模块的 rand() 方法生成了 2×100 的随机矩阵,这样就生成了 100 个 (x, y) 坐标,然后用了一个 dot() 方法算了矩阵乘法,用了一个长度为 2 的向量跟此矩阵相乘,得到一个长度为 100 的向量,然后再加上一个常量,得到 z 坐标,输出结果样例如下:
[[ 0.97232962 0.08897641 0.54844421 0.5877986 0.5121088 0.64716059 0.22353953 0.18406206 0.16782761 0.97569454 0.65686035 0.75569868 0.35698661 0.43332314 0.41185728 0.24801297 0.50098598 0.12025958 0.40650111 0.51486945 0.19292323 0.03679928 0.56501174 0.5321334 0.71044683 0.00318134 0.76611853 0.42602748 0.33002195 0.04414672 0.73208278 0.62182301 0.49471655 0.8116194 0.86148429 0.48835048 0.69902027 0.14901569 0.18737803 0.66826463 0.43462989 0.35768151 0.79315376 0.0400687 0.76952982 0.12236254 0.61519378 0.92795062 0.84952474 0.16663995 0.13729768 0.50603199 0.38752931 0.39529857 0.29228279 0.09773371 0.43220878 0.2603009 0.14576958 0.21881725 0.64888018 0.41048348 0.27641159 0.61700606 0.49728736 0.75936913 0.04028837 0.88986284 0.84112513 0.34227493 0.69162005 0.89058989 0.39744586 0.85080278 0.37685293 0.80529863 0.31220895 0.50500977 0.95800418 0.43696108 0.04143282 0.05169986 0.33503434 0.1671818 0.10234453 0.31241918 0.23630807 0.37890589 0.63020509 0.78184551 0.87924582 0.99288088 0.30762389 0.43499199 0.53140771 0.43461791 0.23833922 0.08681628 0.74615192 0.25835371] [ 0.8174957 0.26717573 0.23811154 0.02851068 0.9627012 0.36802396 0.50543582 0.29964805 0.44869211 0.23191817 0.77344608 0.36636299 0.56170034 0.37465382 0.00471885 0.19509546 0.49715847 0.15201907 0.5642485 0.70218688 0.6031307 0.4705168 0.98698962 0.865367 0.36558965 0.72073907 0.83386165 0.29963031 0.72276717 0.98171854 0.30932376 0.52615297 0.35522953 0.13186514 0.73437029 0.03887378 0.1208882 0.67004597 0.83422536 0.17487818 0.71460873 0.51926661 0.55297899 0.78169805 0.77547258 0.92139858 0.25020468 0.70916855 0.68722379 0.75378138 0.30182058 0.91982585 0.93160367 0.81539184 0.87977934 0.07394848 0.1004181 0.48765802 0.73601437 0.59894943 0.34601998 0.69065076 0.6768015 0.98533565 0.83803362 0.47194552 0.84103006 0.84892255 0.04474261 0.02038293 0.50802571 0.15178065 0.86116213 0.51097614 0.44155359 0.67713588 0.66439205 0.67885226 0.4243969 0.35731083 0.07878648 0.53950399 0.84162414 0.24412845 0.61285144 0.00316137 0.67407191 0.83218956 0.94473189 0.09813353 0.16728765 0.95433819 0.1416636 0.4220584 0.35413414 0.55999744 0.94829601 0.62568033 0.89808714 0.07021013]] [ 0.85519803 0.48012807 0.61215557 0.58204171 0.74617288 0.66775297 0.56814902 0.51514823 0.5400867 0.739092 0.75174732 0.6999822 0.61943605 0.60492771 0.52450095 0.51342299 0.64972749 0.46648169 0.63480003 0.69489821 0.57850311 0.50514314 0.76690145 0.73271342 0.68625198 0.54510222 0.79660789 0.58773431 0.64356002 0.60958773 0.68148959 0.6917775 0.61946087 0.66985885 0.80531934 0.5542799 0.63388372 0.5787139 0.62305848 0.63545502 0.67331071 0.61115777 0.74854193 0.56836022 0.78595346 0.62098848 0.63459907 0.8202189 0.79230218 0.60074826 0.50155342 0.73577477 0.70257953 0.68166794 0.6636407 0.44410981 0.54974625 0.57562188 0.59093375 0.58543506 0.66386805 0.6612752 0.61828378 0.78216895 0.71679293 0.72219985 0.58029252 0.83674336 0.66128606 0.50675907 0.70909116 0.6975331 0.69146618 0.75743606 0.6013666 0.77701676 0.6265411 0.68727338 0.77228063 0.60255049 0.42818714 0.52341076 0.66883513 0.49898023 0.55327365 0.49435803 0.6057068 0.68010968 0.77800791 0.65418036 0.69723127 0.8887319 0.52061989 0.61490928 0.63024914 0.64238486 0.66116097 0.55118095 0.80346301 0.49154814]
这样我们就得到了一些三维的点。
构造模型
随后我们用 TensorFlow 来根据这些数据拟合一个平面,拟合的过程实际上就是寻找 (x, y) 和 z 的关系,即变量 x_data 和变量 y_data 的关系,而它们之间的关系刚才我们用了线性变换表示出来了,即 z = w * (x, y) + b,所以拟合的过程实际上就是找 w 和 b 的过程,所以这里我们就首先像设变量一样来设两个变量 w 和 b,代码如下:
x = tf.placeholder(tf.float32, [, ]) y_label = tf.placeholder(tf.float32, []) b = tf.Variable(tf.zeros([])) w = tf.Variable(tf.random_uniform([], -1.0, 1.0)) y = tf.matmul(tf.reshape(w, [, ]), x) + b
在创建模型的时候,我们首先可以将现有的变量来表示出来,用 placeholder() 方法声明即可,一会我们在运行的时候传递给它真实的数据就好,第一个参数是数据类型,第二个参数是形状,因为 x_data 是 2×100 的矩阵,所以这里形状定义为 [2, 100],而 y_data 是长度为 100 的向量,所以这里形状定义为 [100],当然此处使用元组定义也可以,不过要写成 (100, )。
随后我们用 Variable 初始化了 TensorFlow 中的变量,b 初始化为一个常量,w 是一个随机初始化的 1×2 的向量,范围在 -1 和 1 之间,然后 y 再用 w、x、b 表示出来,其中 matmul() 方法就是 TensorFlow 中提供的矩阵乘法,类似 Numpy 的 dot() 方法。不过不同的是 matmul() 不支持向量和矩阵相乘,即不能 BroadCast,所以在这里做乘法前需要先调用 reshape() 一下转成 1×2 的标准矩阵,最后将结果表示为 y。
这样我们就构造出来了一个线性模型。
这里的 y 是我们模型中输出的值,而真实的数据却是我们输入的 y_data,即 y_label。
损失函数
要拟合这个平面的话,我们需要减小 y_label 和 y 的差距就好了,这个差距越小越好。
所以接下来我们可以定义一个损失函数,来代表模型实际输出值和真实值之间的差距,我们的目的就是来减小这个损失,代码实现如下:
loss = tf.reduce_mean(tf.square(y - y_label))
这里调用了 square() 方法,传入 y_label 和 y 的差来求得平方和,然后使用 reduce_mean() 方法得到这个值的平均值,这就是现在模型的损失值,我们的目的就是减小这个损失值,所以接下来我们使用梯度下降的方法来减小这个损失值即可,定义如下代码:
optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss)
这里定义了 GradientDescentOptimizer 优化,即使用梯度下降的方法来减小这个损失值,我们训练模型就是来模拟这个过程。
运行模型
最后我们将模型运行起来即可,运行时必须声明一个 Session 对象,然后初始化所有的变量,然后执行一步步的训练即可,实现如下:
with tf.Session() as sess: sess.run(tf.global_variables_initializer()) ): sess.run(train, feed_dict={x: x_data, y: y_data}) == : print(step, sess.run(w), sess.run(b))
这里定义了 200 次循环,每一次循环都会执行一次梯度下降优化,每次循环都调用一次 run() 方法,传入的变量就是刚才定义个 train 对象,feed_dict 就把 placeholder 类型的变量赋值即可。随着训练的进行,损失会越来越小,w 和 b 也会被慢慢调整为拟合的值。
在这里每 10 次 循环我们都打印输出一下拟合的 w 和 b 的值,结果如下:
[ 0.31494665 0.33602586] [ 0.84270978] [ 0.19601417 0.17301694] [ 0.47917289] [ 0.23550016 0.18053198] [ 0.44838765] [ 0.26029009 0.18700737] [ 0.43032286] [ 0.27547371 0.19152154] [ 0.41897511] [ 0.28481475 0.19454622] [ 0.41185945] [ 0.29058149 0.19652548] [ 0.40740564] [ 0.2941508 0.19780098] [ 0.40462157] [ 0.29636407 0.1986146 ] [ 0.40288284] [ 0.29773837 0.19913 ] [ 0.40179768] [ 0.29859257 0.19945487] [ 0.40112072] [ 0.29912385 0.199659 ] [ 0.40069857] [ 0.29945445 0.19978693] [ 0.40043539] [ 0.29966027 0.19986697] [ 0.40027133] [ 0.29978839 0.19991697] [ 0.40016907] [ 0.29986817 0.19994824] [ 0.40010536] [ 0.29991791 0.1999677 ] [ 0.40006563] [ 0.29994887 0.19997987] [ 0.40004089] [ 0.29996812 0.19998746] [ 0.40002549] [ 0.29998016 0.19999218] [ 0.40001586] [ 0.29998764 0.19999513] [ 0.40000987]
可以看到,随着训练的进行,w 和 b 也慢慢接近真实的值,拟合越来越精确,接近正确的值。
结语
以上便是通过一个最简单的平面拟合的案例来说明了一下 TensorFlow 的用法,是不是很简单?
芝麻HTTP:TensorFlow基础入门的更多相关文章
- TensorFlow从入门到实战资料汇总 2017-02-02 06:08 | 数据派
TensorFlow从入门到实战资料汇总 2017-02-02 06:08 | 数据派 来源:DataCastle数据城堡 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学 ...
- 【6】TensorFlow光速入门-python模型转换为tfjs模型并使用
本文地址:https://www.cnblogs.com/tujia/p/13862365.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tenso ...
- 【0】TensorFlow光速入门-序
本文地址:https://www.cnblogs.com/tujia/p/13863181.html 序言: 对于我这么一个技术渣渣来说,想学习TensorFlow机器学习,实在是太难了: 百度&qu ...
- js学习笔记:webpack基础入门(一)
之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...
- 「译」JUnit 5 系列:基础入门
原文地址:http://blog.codefx.org/libraries/junit-5-basics/ 原文日期:25, Feb, 2016 译文首发:Linesh 的博客:JUnit 5 系列: ...
- .NET正则表达式基础入门
这是我第一次写的博客,个人觉得十分不容易.以前看别人写的博客文字十分流畅,到自己来写却发现十分困难,还是感谢那些为技术而奉献自己力量的人吧. 本教程编写之前,博主阅读了<正则指引>这本入门 ...
- 从零3D基础入门XNA 4.0(2)——模型和BasicEffect
[题外话] 上一篇文章介绍了3D开发基础与XNA开发程序的整体结构,以及使用Model类的Draw方法将模型绘制到屏幕上.本文接着上一篇文章继续,介绍XNA中模型的结构.BasicEffect的使用以 ...
- 从零3D基础入门XNA 4.0(1)——3D开发基础
[题外话] 最近要做一个3D动画演示的程序,由于比较熟悉C#语言,再加上XNA对模型的支持比较好,故选择了XNA平台.不过从网上找到很多XNA的入门文章,发现大都需要一些3D基础,而我之前并没有接触过 ...
- Shell编程菜鸟基础入门笔记
Shell编程基础入门 1.shell格式:例 shell脚本开发习惯 1.指定解释器 #!/bin/bash 2.脚本开头加版权等信息如:#DATE:时间,#author(作者)#mail: ...
随机推荐
- 【OCR技术系列之三】大批量生成文字训练集
放假了,终于可以继续可以静下心写一写OCR方面的东西.上次谈到文字的切割,今天打算总结一下我们怎么得到用于训练的文字数据集.如果是想训练一个手写体识别的模型,用一些前人收集好的手写文字集就好了,比如中 ...
- XBIM 基于 WexBIM 文件在 WebGL 浏览和加载
目录 xBIM 应用与学习 (一) xBIM 应用与学习 (二) xBIM 基本的模型操作 xBIM 日志操作 XBIM 3D 墙壁案例 xBIM 格式之间转换 xBIM 使用Linq 来优化查询 x ...
- JDBC学习笔记(四)
减少各个Dao类间的重复代码,有以下几种方式: 写一个DBConnectionManager,将公共的查询逻辑做成方法,将sql语句作为参数传递给方法. public class DBConnecti ...
- Jmeter_实现操作postgresql数据库
[环境] ①Jmeter版本:3.2,JDK:1.8: ②postgresql驱动包postgresql-9.3-1103.jdbc4,将该jar包置于..\apache-jmeter-3.2\lib ...
- 介绍一个轻量级iOS安全框架:SSKeyChain
SSKeyChains对苹果安全框架API进行了简单封装,支持对存储在钥匙串中密码.账户进行访问,包括读取.删除和设置.SSKeyChain的作者是大名鼎鼎的SSToolkit的作者samsoffes ...
- 分享:Python中的位运算符
按位运算符是把数字看作二进制来进行计算的.用的不太多,简单了解. 下表中变量 a 为 60,b 为 13二进制格式如下: a = 0011 1100 b = 0000 1101 a&b = 0 ...
- CEF小白人系列1-认识CEF
手头上有个项目需要做浏览器的相关功能,评估了几个嵌入式方案最后选定CEF作为开发基础. 在入坑新技术的时候第一选择是去官网学习,这是一个非常好的习惯. CEF官网(请科学上网) https://bit ...
- 史上最全的FTP网址
无帐号密码的为匿名登录 ftp://202.114.1.121 ftp://202.114.10.199 ftp://warez:cn.ftp@202.114.12.174 ftp://Music2: ...
- Centos下_MysqL5.7在使用mysqldump命令备份数据库报错:mysqldump: [Warning] Using a password on the command line interface can be insecure.
在阿里云服务器增加一个shell脚本定时备份数据库脚本执行任务时,测试性的执行了备份命令,如下 [root@iZ2ze503xw2q1fftv5rhboZ mysql_bak]# /usr/local ...
- Python 上下文管理器和else块
最终,上下文管理器可能几乎与子程序(subroutine)本身一样重要.目前,我们只了解了上下文管理器的皮毛--Basic 语言有with 语句,而且很多语言都有.但是,在各种语言中 with 语句的 ...