问题

用过 Kafka 的同学用过都知道,每个 Topic 一般会有很多个 partitions。为了使得我们能够及时消费消息,我们也可能会启动多个 Consumer 去消费,而每个 Consumer 又会启动一个或多个streams去分别消费 Topic 里面的数据。我们又知道,Kafka 存在 Consumer Group 的概念,也就是 group.id 一样的 Consumer,这些 Consumer 属于同一个Consumer Group,组内的所有消费者协调在一起来消费订阅主题(subscribed topics)的所有分区(partition)。当然,每个分区只能由同一个消费组内的一个consumer来消费。那么问题来了,同一个 Consumer Group 里面的 Consumer 是如何知道该消费哪些分区里面的数据呢?

如果想及时了解Spark、Hadoop或者Hbase相关的文章,欢迎关注微信公共帐号:iteblog_hadoop

如上图,Consumer1 为啥消费的是 Partition0 和 Partition2,而不是 Partition0 和 Partition3?这就涉及到 Kafka 内部分区分配策略(Partition Assignment Strategy)了。

在 Kafka 内部存在两种默认的分区分配策略:Range 和 RoundRobin。当以下事件发生时,Kafka 将会进行一次分区分配:

  • 同一个 Consumer Group 内新增消费者

  • 消费者离开当前所属的Consumer Group,包括shuts down 或 crashes

  • 订阅的主题新增分区

将分区的所有权从一个消费者移到另一个消费者称为重新平衡(rebalance),如何rebalance就涉及到本文提到的分区分配策略。下面我们将详细介绍 Kafka 内置的两种分区分配策略。本文假设我们有个名为 T1 的主题,其包含了10个分区,然后我们有两个消费者(C1,C2)来消费这10个分区里面的数据,而且 C1 的 num.streams = 1,C2 的 num.streams = 2。

Range strategy

Range策略是对每个主题而言的,首先对同一个主题里面的分区按照序号进行排序,并对消费者按照字母顺序进行排序。在我们的例子里面,排完序的分区将会是0, 1, 2, 3, 4, 5, 6, 7, 8, 9;消费者线程排完序将会是C1-0, C2-0, C2-1。然后将partitions的个数除于消费者线程的总数来决定每个消费者线程消费几个分区。如果除不尽,那么前面几个消费者线程将会多消费一个分区。在我们的例子里面,我们有10个分区,3个消费者线程, 10 / 3 = 3,而且除不尽,那么消费者线程 C1-0 将会多消费一个分区,所以最后分区分配的结果看起来是这样的:

C1-0 将消费 0, 1, 2, 3 分区
C2-0 将消费 4, 5, 6 分区
C2-1 将消费 7, 8, 9 分区

假如我们有11个分区,那么最后分区分配的结果看起来是这样的:

C1-0 将消费 0, 1, 2, 3 分区
C2-0 将消费 4, 5, 6, 7 分区
C2-1 将消费 8, 9, 10 分区

假如我们有2个主题(T1和T2),分别有10个分区,那么最后分区分配的结果看起来是这样的:

C1-0 将消费 T1主题的 0, 1, 2, 3 分区以及 T2主题的 0, 1, 2, 3分区
C2-0 将消费 T1主题的 4, 5, 6 分区以及 T2主题的 4, 5, 6分区
C2-1 将消费 T1主题的 7, 8, 9 分区以及 T2主题的 7, 8, 9分区

可以看出,C1-0 消费者线程比其他消费者线程多消费了2个分区,这就是Range strategy的一个很明显的弊端。

RoundRobin strategy

使用RoundRobin策略有两个前提条件必须满足:

  • 同一个Consumer Group里面的所有消费者的num.streams必须相等;

  • 每个消费者订阅的主题必须相同。

所以这里假设前面提到的2个消费者的num.streams = 2。RoundRobin策略的工作原理:将所有主题的分区组成 TopicAndPartition 列表,然后对 TopicAndPartition 列表按照 hashCode 进行排序,这里文字可能说不清,看下面的代码应该会明白:

val allTopicPartitions = ctx.partitionsForTopic.flatMap { case(topic, partitions) =>
 info("Consumer %s rebalancing the following partitions for topic %s: %s"
      .format(ctx.consumerId, topic, partitions))
 partitions.map(partition => {
   TopicAndPartition(topic, partition)
 })
}.toSeq.sortWith((topicPartition1, topicPartition2) => {
 /*
  * Randomize the order by taking the hashcode to reduce the likelihood of all partitions of a given topic ending
  * up on one consumer (if it has a high enough stream count).
  */
 topicPartition1.toString.hashCode < topicPartition2.toString.hashCode
})

最后按照round-robin风格将分区分别分配给不同的消费者线程。

在我们的例子里面,加入按照 hashCode 排序完的topic-partitions组依次为T1-5, T1-3, T1-0, T1-8, T1-2, T1-1, T1-4, T1-7, T1-6, T1-9,我们的消费者线程排序为C1-0, C1-1, C2-0, C2-1,最后分区分配的结果为:

C1-0 将消费 T1-5, T1-2, T1-6 分区;
C1-1 将消费 T1-3, T1-1, T1-9 分区;
C2-0 将消费 T1-0, T1-4 分区;
C2-1 将消费 T1-8, T1-7 分区;

多个主题的分区分配和单个主题类似,这里就不在介绍了。

根据上面的详细介绍相信大家已经对Kafka的分区分配策略原理很清楚了。不过遗憾的是,目前我们还不能自定义分区分配策略,只能通过partition.assignment.strategy参数选择 range 或 roundrobin。partition.assignment.strategy参数默认的值是range。

Kafka分区分配策略(Partition Assignment Strategy的更多相关文章

  1. Kafka分区分配策略(Partition Assignment Strategy)

    众所周知,Apache Kafka是基于生产者和消费者模型作为开源的分布式发布订阅消息系统(当然,目前Kafka定位于an open-source distributed event streamin ...

  2. Kafka分区分配策略分析——重点:StickyAssignor

    “ 为什么Kafka在RangeAssigor.RoundRobinAssignor的基础上,又新增了PartitionAssignor,它解决了什么问题?” 背景 用过Kafka的同学应该都知道Ka ...

  3. Kafka分区分配策略-RangeAssignor、RoundRobinAssignor、StickyAssignor

    引言按照Kafka默认的消费逻辑设定,一个分区只能被同一个消费组(ConsumerGroup)内的一个消费者消费.假设目前某消费组内只有一个消费者C0,订阅了一个topic,这个topic包含7个分区 ...

  4. Kafka消费分组和分区分配策略

    Kafka消费分组,消息消费原理 同一个消费组里的消费者不能消费同一个分区,不同消费组的消费组可以消费同一个分区 Kafka分区分配策略 在 Kafka 内部存在两种默认的分区分配策略:Range 和 ...

  5. kafka的分区分配策略

    用过 Kafka 的同学应该都知道,每个 Topic 一般会有很多个 partitions.为了使得我们能够及时消费消息,我们也可能会启动多个 Consumer 去消费,而每个 Consumer 又会 ...

  6. Kafka 消费组消费者分配策略

    body { margin: 0 auto; font: 13px / 1 Helvetica, Arial, sans-serif; color: rgba(68, 68, 68, 1); padd ...

  7. Kafka分区与消费者的关系

    1.  前言 我们知道,生产者发送消息到主题,消费者订阅主题(以消费者组的名义订阅),而主题下是分区,消息是存储在分区中的,所以事实上生产者发送消息到分区,消费者则从分区读取消息,那么,这里问题来了, ...

  8. 深入了解Kafka【五】Partition和消费者的关系

    1.消费者与Partition 以下来自<kafak权威指南>第4章. 假设主题T1有四个分区. 1.1.一个消费者组 1.1.1.消费者数量小于分区数量 只有一个消费者时,消费者1将收到 ...

  9. kafka分区及副本在broker的分配

    kafka分区及副本在broker的分配 部分内容參考自:http://blog.csdn.net/lizhitao/article/details/41778193 以下以一个Kafka集群中4个B ...

随机推荐

  1. dubbo 2.7.0 中缺乏 <dubbo:annotation /> 的解决方案

    一.背景  从 dubbo 2.6.5 升级到 2.7.0,突然发现好多地方不能用了,dubbo:annotation 直接报红,原先的 @Service 和 @Reference 中直接报了过时,源 ...

  2. PHP制作个人博客-广告位添加与调用 推荐文章数据调取

    上一节博客的导航我们已经动态调取,这一节我们主讲一下如何根据页面布局,后台添加广告位,及模板上动态调取广告.博客推荐文章的数据调用. 首先我们在云码博客的后台添加10条左右的测试数据,thinkcmf ...

  3. QQ音乐vkey获取,更新播放url

    QQ音乐接口播放经常换, 最开始 url: `http://ws.stream.qqmusic.qq.com/${musicData.songid}.m4a?fromtag=46` 然后 url:`h ...

  4. BestSync多终端文件资料同步利器

    分享一款多终端文件同步的强力软件,windows下使用. 我这里的多终端意思是,多台电脑.移动存储.云端. 就我个人而言,实用性在于移动硬盘和电脑上都有的文件,比如保存项目资料,电脑上需要编辑,有时外 ...

  5. arcgis api for js入门开发系列十九图层在线编辑

    本篇主要讲述的是利用arcgis api实现图层在线编辑功能模块,效果图如下: 实现思路: 1.arcgis server发布的FeatureServer服务提供的图层在线编辑能力: 2.实现的在线编 ...

  6. Vue源码实现

    链接1:https://www.cnblogs.com/tiedaweishao/p/8933153.html 链接2:https://www.cnblogs.com/erbingbing/p/647 ...

  7. 自动化批量管理工具pssh - 运维小结

    pssh提供OpenSSH和相关工具的并行版本.包括pssh,pscp,prsync,pnuke和pslurp.该项目包括psshlib,可以在自定义应用程序中使用.pssh是python写的可以并发 ...

  8. 国产多维数据库 NeuralCube!中国人自己的大数据底层核心技术!

    商业转载请联系作者获得授权,非商业转载请注明出处. 提到‘数据库’,首先被想到的肯定是Oracle.DB2.SQL Server.MySql这些传统的关系型数据库.数据库的概念是非常宽泛的,除了上述的 ...

  9. Windows中通过命令行启动打开Service 管理工具

    经常需要打开Services 管理工具操控Service 的启动,停止. 通过控制面板 --> 管理工具 -->Service  太慢. 学到一个快捷方式. windows + R  启动 ...

  10. 第一课android开发之在activity间传递参数

    一.活动间简单参数传递:1.在布局中添加按钮,用<Button,用id设置id名称,id="@+id/这儿填写你要设置成的名称":用text设置按钮上显示的文字.text=& ...