AtCoder ABC 042D いろはちゃんとマス目 / Iroha and a Grid
题目链接:https://abc042.contest.atcoder.jp/tasks/arc058_b
题目大意:
给定一个 H * W 的矩阵,其中左下角 A * B 区域是禁区,要求在不踏入禁区的前提下,从左上角走到右下角一共有多少种走法?
分析:
首先不管怎么走,路线都是要跨越蓝色边界线的,这里我们只讨论从 A 跨越到 B 的情况,其余情况同理。
在这种情况下,总的路数就是所有从 S 走到 A 的路线总数乘上所有从 B 走到 T 的路线总数。
从 S 走到 A 的路线总数就是组合数 C(5, 2),这是因为从 S 走到 A 需要走2个 D 和3个 R,也就是说,2个 D 和3个 L 能组合出多少不同的序列,这是非常基本的组合题,答案就是5个里选2个即 C(5, 2)。
同理从 B 走到 T 的路线总数为 C(9, 2)。
于是这种情况下的总路数为 C(5, 2) * C(9, 2)。
找一下规律把所有情况加起来即可,注意数据规模很大,所以在求组合数时要用到逆元。
代码如下:
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std; #define INIT() std::ios::sync_with_stdio(false);std::cin.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef pair< int, int > PII;
typedef set< int > SI;
typedef vector< int > VI;
typedef map< int, int > MII;
const double EPS = 1e-;
const int inf = 1e9 + ;
const LL mod = 1e9 + ;
const int maxN = 1e5 + ;
const LL ONE = ;
const LL evenBits = 0xaaaaaaaaaaaaaaaa;
const LL oddBits = 0x5555555555555555; LL fac[ * maxN];
void init_fact() {
fac[] = ;
For(i, , * maxN - ) {
fac[i] = (i * fac[i - ]) % mod;
}
} //ax + by = gcd(a, b) = d
// 扩展欧几里德算法
inline void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
if (!b) {d = a, x = , y = ;}
else{
ex_gcd(b, a % b, y, x, d);
y -= x * (a / b);
}
} // 求a关于p的逆元,如果不存在,返回-1
// a与p互质,逆元才存在
inline LL inv_mod(LL a, LL p){
LL d, x, y;
ex_gcd(a, p, x, y, d);
return d == ? (x % p + p) % p : -;
} // Calculate x^y % p
inline LL pow_mod(LL x, LL y, LL p){
LL ans = ;
while(y){
if(y & ) ans = (ans * x) % p;
x = (x * x) % p;
y >>= ;
}
return ans;
} inline LL comb_mod(LL m,LL n){
LL ans;
if(m > n) swap(m, n); ans = (fac[n] * inv_mod(fac[m], mod)) % mod;
ans = (ans * inv_mod(fac[n - m], mod)) % mod; return ans;
} int H, W, A, B;
LL ans; int main(){
INIT();
init_fact();
cin >> H >> W >> A >> B;
For(i, , H - A) {
ans += (comb_mod(i - , i + B - ) * comb_mod(W - B - , W - B + H - i - )) % mod;
ans %= mod;
} cout << ans << endl;
return ;
}
AtCoder ABC 042D いろはちゃんとマス目 / Iroha and a Grid的更多相关文章
- いろはちゃんとマス目 / Iroha and a Grid (组合数学)
题目链接:http://abc042.contest.atcoder.jp/tasks/arc058_b Time limit : 2sec / Memory limit : 256MB Score ...
- ATCODER ABC 099
ATCODER ABC 099 记录一下自己第一场AK的比赛吧...虽然还是被各种踩... 只能说ABC确实是比较容易. A 题目大意 给你一个数(1~1999),让你判断它是不是大于999. Sol ...
- Atcoder ABC 141
Atcoder ABC 141 A - Weather Prediction SB题啊,不讲. #include<iostream> #include<cstdio> #inc ...
- Atcoder ABC 139E
Atcoder ABC 139E 题意: n支球队大循环赛,每支队伍一天只能打一场,求最少几天能打完. 解法: 考虑抽象图论模型,既然一天只能打一场,那么就把每一支球队和它需要交手的球队连边. 求出拓 ...
- Atcoder ABC 139D
Atcoder ABC 139D 解法: 等差数列求和公式,记得开 $ long long $ CODE: #include<iostream> #include<cstdio> ...
- Atcoder ABC 139C
Atcoder ABC 139C 题意: 有 $ n $ 个正方形,选择一个起始位置,使得从这个位置向右的小于等于这个正方形的高度的数量最多. 解法: 简单递推. CODE: #include< ...
- Atcoder ABC 139B
Atcoder ABC 139B 题意: 一开始有1个插口,你的插排有 $ a $ 个插口,你需要 $ b $ 个插口,问你最少需要多少个插排. 解法: 暴力模拟. CODE: #include< ...
- Atcoder ABC 139A
Atcoder ABC 139A 题意: 给你两个字符串,记录对应位置字符相同的个数 $ (n=3) $ 解法: 暴力枚举. CODE: #include<iostream> #inclu ...
- atcoder abc 244
atcoder abc 244 D - swap hats 给定两个 R,G,B 的排列 进行刚好 \(10^{18}\) 次操作,每一次选择两个交换 问最后能否相同 刚好 \(10^{18}\) 次 ...
随机推荐
- okhttputils【 Android 一个改善的okHttp封装库】使用(一)
版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 本文使用的OKHttp封装库是张鸿洋(鸿神)写的,因为在项目中一直使用这个库,所以对于一些常用的请求方式都验证过,所以特此整理下. ...
- 前后端同学,必会的Linux常用基础命令
无论是前端还是后端同学,一些常用的linux命令还是必须要掌握的.发布版本.查看日志等等都会用到.以下是我简单的总结了一些简单又常用的命令,欢迎大家补充.希望能帮助到大家 本文首发于公众号 程序员共成 ...
- tcc分布式事务框架解析
前言碎语 楼主之前推荐过2pc的分布式事务框架LCN.今天来详细聊聊TCC事务协议. 2pc实现:https://github.com/codingapi/tx-lcn tcc实现:https://g ...
- SmartCode.ETL 这不是先有鸡还是蛋的问题!
继国庆节 SmartCode 正式版(SmartCode.Generator)发布之后,SmartCode 迎来了新的能力 SmartCode.ETL ! SmartCode 正式版从开始发布就从未说 ...
- #6 判断一个数是否为2的n次方
「ALBB面试题」 [题目] 如何判断一个数是否为2的n次方 [题目分析] 看到这种题,相信大家第一反应就是循环除2,这样做肯定是可以得出结果的:但是这种做法无疑大大增加了计算机的运行时间,一个非常大 ...
- k8s数据管理(八)--技术流ken
volume 我们经常会说:容器和 Pod 是短暂的.其含义是它们的生命周期可能很短,会被频繁地销毁和创建.容器销毁时,保存在容器内部文件系统中的数据都会被清除. 为了持久化保存容器的数据,可以使用 ...
- ftp上传与下载文件
准备工作 服务器已经配置好ftp服务 服务器linux centos 7.4 搭建ftp服务器:https://www.cnblogs.com/mmzs/p/10601683.html 需要用到的ja ...
- .net 多线程 Thread ThreadPool Task
先准备一个耗时方法 /// <summary>/// 耗时方法/// </summary>/// <param name="name">< ...
- 我的Python之旅第六天--面向对象初识
一.概念 类:是具有相同属性的技能的一类实物 对象:实例化的一个类,是类的具体体现 class Person: '''内容''' animal='高级动物' soul='有思想' #animal,so ...
- css的三种书写方式
一.内联样式 <p style="color: sienna; margin-left: 20px"> This is a paragraph </p> 二 ...