#include <iostream>
using namespace std;

/*函数作用:取待排序序列中low、mid、high三个位置上数据,选取他们中间的那个数据作为枢轴*/
int median(int arr[], int b[], int len1, int low, int high) {
	int mid = low + ((high - low) >> 1); //计算数组中间的元素的下标

	int &lowData = low >= len1 ? b[low - len1] : arr[low];
	int &midData = mid >= len1 ? b[mid - len1] : arr[mid];
	int &highData = high >= len1 ? b[high - len1] : arr[high];
	//使用三数取中法选择枢轴
	if (midData > highData) //目标: arr[mid] <= arr[high]
			{
		swap(midData, highData);
	}
	if (lowData > highData) //目标: arr[low] <= arr[high]
			{
		swap(lowData, highData);
	}
	if (midData > lowData) //目标: arr[low] >= arr[mid]
			{
		swap(midData, lowData);
	}
	//此时,arr[mid] <= arr[low] <= arr[high]
	return lowData;
	//low的位置上保存这三个位置中间的值
	//分割时可以直接使用low位置的元素作为枢轴,而不用改变分割函数了
}

int kth_elem(int a[], int b[], int len1, int low, int high, int k) {
	int pivot = median(a, b, len1, low, high);

	//要么是选取数组中中位数作为枢纽元,保证最坏情况下,依然为线性O(N)的平均时间复杂度。
	int low_temp = low;
	int high_temp = high;
	while (low < high) {
		int tmp = high >= len1 ? b[high - len1] : a[high];
		while (low < high && tmp >= pivot) {
			--high;
			tmp = high >= len1 ? b[high - len1] : a[high];
		}
		if (low >= len1) {
			b[low - len1] = tmp;
		} else {
			a[low] = tmp;
		}

		int tmp1 = low >= len1 ? b[low - len1] : a[low];
		while (low < high && tmp1 < pivot) {
			++low;
			tmp1 = low >= len1 ? b[low - len1] : a[low];
		}
		if (high >= len1) {
			b[high - len1] = tmp1;
		} else {
			a[high] = tmp1;
		}
	}

	if (low >= len1) {
		b[low - len1] = pivot;
	} else {
		a[low] = pivot;
	}

	//以下就是主要思想中所述的内容
	if (low == k - 1) {
		if (low >= len1) {
			return b[low - len1];
		}
		return a[low];
	} else if (low > k - 1)
		return kth_elem(a, b, len1, low_temp, low - 1, k);
	else
		return kth_elem(a, b, len1, low + 1, high_temp, k);
}

void printArray(int* arr, int len) {
	if (!arr) {
		return;
	}
	for (int i = 0; i < len; ++i) {
		cout << arr[i] << " ";
	}
	cout << endl;
}

void print2SortedArray(int* a, int* b, int len1, int len2) {
	int* arr = new int[len1 + len2];
	for (int i = 0; i < len1; ++i) {
		arr[i] = a[i];
	}
	for (int i = len1, j = 0; j < len2; ++i, j++) {
		arr[i] = b[j];
	}
	sort(arr, arr + len1 + len2);
	printArray(arr, len1 + len2);
	delete arr;
}

int main() {
	int arr1[] = { 2, 12, 5, 10, 43, 24, 33, 4 };
	int arr2[] = { 10, 23, 41, 70, 84, 29, 6 };

	int len1 = sizeof(arr1) / sizeof(int);
	int len2 = sizeof(arr2) / sizeof(int);

	print2SortedArray(arr1, arr2, len1, len2);

	int mid1 = (len1 + len2) / 2 + 1;
	int mid2 = (len1 + len2) % 2 == 0 ? mid1 - 1 : mid1;

	int midData1 = kth_elem(arr1, arr2, len1, 0, len1 + len2 - 1, mid1);
	int midData2 = kth_elem(arr1, arr2, len1, 0, len1 + len2 - 1, mid2);

//	cout << midData1 << ',' << midData2 << endl;
	cout << "中位数: " << (midData1 + midData2) / 2 << endl;
	return 0;
}

两个无序数组分别叫A和B,长度分别是m和n,求中位数,要求时间复杂度O(m+n),空间复杂度O(1) 。的更多相关文章

  1. 已知大小分别为m、n的两个无序数组A、B和一个常数c,求满足A[i]+B[j]=c的所有A[i]和B[j]

    方法一:枚举法.该方法是最容易.也是最简单的方法,枚举出数组A和数组B中所有的元素对,判断其和是否为c,如果是,则输出. 方法二:排序+二分查找法.首先,对两个数组中长度较大数组,不妨设为A,排序:然 ...

  2. 从0打卡leetcode之day 5 ---两个排序数组的中位数

    前言 我靠,才坚持了四天,就差点不想坚持了.不行啊,我得把leetcode上的题给刷完,不然怕是不好进入bat的大门. 题目描述 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . ...

  3. 如何寻找无序数组中的第K大元素?

    如何寻找无序数组中的第K大元素? 有这样一个算法题:有一个无序数组,要求找出数组中的第K大元素.比如给定的无序数组如下所示: 如果k=6,也就是要寻找第6大的元素,很显然,数组中第一大元素是24,第二 ...

  4. 对无序数组的并发搜索的java实现

    对无序数组的并发搜索的实现可以充分的用到多cpu的优势 一种简单的策略是将原始数组按照期望的线程数进行分割,如果我们计划使用两个线程进行搜索,就可以把一个数组分成两个,每个线程各自独立的搜索,当其中有 ...

  5. 从长度为 M 的无序数组中,找出N个最小的数

    从长度为 M 的无序数组中,找出 N个最小的数 在一组长度为 n 的无序的数组中,取最小的 m个数(m < n), 要求时间复杂度 O(m * n) 网易有道面试题 const minTopK ...

  6. 无序数组求第K大的数

    问题描述 无序数组求第K大的数,其中K从1开始算. 例如:[0,3,1,8,5,2]这个数组,第2大的数是5 OJ可参考:LeetCode_0215_KthLargestElementInAnArra ...

  7. [LeetCode] Median of Two Sorted Arrays 两个有序数组的中位数

    There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...

  8. 取两个String数组的交集

    import org.testng.annotations.Test; import java.util.HashMap; import java.util.LinkedList; import ja ...

  9. 有1,2,3一直到n的无序数组,排序

    题目:有1,2,3,..n 的无序整数数组,求排序算法.要求时间复杂度 O(n), 空间复杂度O(1). 分析:对于一般数组的排序显然 O(n) 是无法完成的. 既然题目这样要求,肯定原先的数组有一定 ...

随机推荐

  1. Spring-cloud(五) 使用Ribbon进行Restful请求

    写在前面 本文由markdown格式写成,为本人第一次这么写,排版可能会有点乱,还望各位海涵. 主要写的是使用Ribbon进行Restful请求,测试各个方法的使用,代码冗余较高,比较适合初学者,介意 ...

  2. 【Swift】图文混排,ios开发中在textfield或textView中插入图片

    在ios开发中,我们一般都是在textfield或者textView中输入文字.当我们需要插入图片的时候其实也是很简单的 我们需要利用的textfield,textView的属性化文本,将图片以附件的 ...

  3. 机器学习技法:14 Radial Basis Function Network

    Roadmap RBF Network Hypothesis RBF Network Learning k-Means Algorithm k-Means and RBF Network in Act ...

  4. 【实验吧】CTF_Web_简单的SQL注入之3

    实验吧第二题 who are you? 很有意思,过两天好好分析写一下.简单的SQL注入之3也很有意思,适合做手工练习,详细分析见下. http://ctf5.shiyanbar.com/web/in ...

  5. day5 liaoxuefeng---访问数据库、web开发、异步IO

    一.访问数据库 二.web开发 三.异步IO

  6. IE下iframe跨域session和cookie失效问题的解决方案

    http://blog.csdn.net/wauit/article/details/9875157

  7. 关于 printf scanf getchar

    float默认小数6位 右对齐.-m 左对齐 在调用printf函数输出数据时,当数据的实际位宽大于printf函数中的指定位宽时,将按照数据的实际位宽输出数据. .n表精度 输出%符号 注意点 #i ...

  8. redis锁处理并发问题

    redis锁处理并发问题 redis锁处理高并发问题十分常见,使用的时候常见有几种错误,和对应的解决办法. set方式 setnx方式 setnx+getset方式 set方式 加锁:redis中se ...

  9. HashMap和ConcurrentHashMap实现原理及源码分析

    HashMap实现原理及源码分析 哈希表(hash table)也叫散列表,是一种非常重要的数据结构,应用场景及其丰富,许多缓存技术(比如memcached)的核心其实就是在内存中维护一张大的哈希表, ...

  10. 听说图像识别很难,大神十行代码进行Python图像识别

      随着深度学习算法的兴起和普及,人工智能领域取得了令人瞩目的进步,特别是在计算机视觉领域.21世纪的第二个十年迅速采用卷积神经网络,发明了最先进的算法,大量训练数据的可用性以及高性能和高性价比计算的 ...