用感知机(Perceptron)实现逻辑AND功能的Python3代码
之所以写这篇随笔,是因为参考文章(见文尾)中的的代码是Python2的,放到Python3上无法运行,我花了些时间debug,并记录了调试经过。
参考文章中的代码主要有两处不兼容Python3,一个是lambda函数的使用,另一个是map()的使用。
先放我修改调试后的代码和运行结果,再记录调试经过。
源代码:
#coding=utf-8 from functools import reduce # for py3 class Perceptron(object):
def __init__(self, input_num, activator):
'''
初始化感知器,设置输入参数的个数,以及激活函数。
激活函数的类型为double -> double
'''
self.activator = activator
# 权重向量初始化为0
self.weights = [0.0 for _ in range(input_num)]
# 偏置项初始化为0
self.bias = 0.0
def __str__(self):
'''
打印学习到的权重、偏置项
'''
return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias) def predict(self, input_vec):
'''
输入向量,输出感知器的计算结果
'''
# 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
# 最后利用reduce求和 #list1 = list(self.weights)
#print ("predict self.weights:", list1) return self.activator(
reduce(lambda a, b: a + b,
list(map(lambda tp: tp[0] * tp[1], # HateMath修改
zip(input_vec, self.weights)))
, 0.0) + self.bias)
def train(self, input_vecs, labels, iteration, rate):
'''
输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
'''
for i in range(iteration):
self._one_iteration(input_vecs, labels, rate) def _one_iteration(self, input_vecs, labels, rate):
'''
一次迭代,把所有的训练数据过一遍
'''
# 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
# 而每个训练样本是(input_vec, label)
samples = zip(input_vecs, labels)
# 对每个样本,按照感知器规则更新权重
for (input_vec, label) in samples:
# 计算感知器在当前权重下的输出
output = self.predict(input_vec)
# 更新权重
self._update_weights(input_vec, output, label, rate) def _update_weights(self, input_vec, output, label, rate):
'''
按照感知器规则更新权重
'''
# 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
# 变成[(x1,w1),(x2,w2),(x3,w3),...]
# 然后利用感知器规则更新权重
delta = label - output
self.weights = list(map( lambda tp: tp[1] + rate * delta * tp[0], zip(input_vec, self.weights)) ) # HateMath修改 # 更新bias
self.bias += rate * delta print("_update_weights() -------------")
print("label - output = delta:" ,label, output, delta)
print("weights ", self.weights)
print("bias", self.bias) def f(x):
'''
定义激活函数f
'''
return 1 if x > 0 else 0 def get_training_dataset():
'''
基于and真值表构建训练数据
'''
# 构建训练数据
# 输入向量列表
input_vecs = [[1,1], [0,0], [1,0], [0,1]]
# 期望的输出列表,注意要与输入一一对应
# [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
labels = [1, 0, 0, 0]
return input_vecs, labels def train_and_perceptron():
'''
使用and真值表训练感知器
'''
# 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
p = Perceptron(2, f)
# 训练,迭代10轮, 学习速率为0.1
input_vecs, labels = get_training_dataset()
p.train(input_vecs, labels, 10, 0.1)
#返回训练好的感知器
return p if __name__ == '__main__':
# 训练and感知器
and_perception = train_and_perceptron()
# 打印训练获得的权重 # 测试
print (and_perception)
print ('1 and 1 = %d' % and_perception.predict([1, 1]))
print ('0 and 0 = %d' % and_perception.predict([0, 0]))
print ('1 and 0 = %d' % and_perception.predict([1, 0]))
print ('0 and 1 = %d' % and_perception.predict([0, 1]))
运行输出:
======================== RESTART: F:\桌面\Perceptron.py ========================
_update_weights() -------------
label - output = delta: 1 0 1
weights [0.1, 0.1]
bias 0.1
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.1, 0.1]
bias 0.0
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.0, 0.1]
bias -0.1
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.0, 0.1]
bias -0.1
_update_weights() -------------
label - output = delta: 1 0 1
weights [0.1, 0.2]
bias 0.0
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias 0.0
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.0, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.0, 0.1]
bias -0.2
_update_weights() -------------
label - output = delta: 1 0 1
weights [0.1, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.1, 0.1]
bias -0.2
_update_weights() -------------
label - output = delta: 1 0 1
weights [0.2, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.2, 0.2]
bias -0.1
_update_weights() -------------
label - output = delta: 0 1 -1
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 1 1 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
_update_weights() -------------
label - output = delta: 0 0 0
weights [0.1, 0.2]
bias -0.2
weights :[0.1, 0.2]
bias :-0.200000 1 and 1 = 1
0 and 0 = 0
1 and 0 = 0
0 and 1 = 0
可以看到,最后训练出来的权重是 [0.1, 0.2],偏置 -0.2,根据感知机模型得到公式:f(x, y) = 0.1x + 0.2y -0.2
可以看到是个三维平面,这个平面实现了对样本中4个三维空间点分类。
调试经过:
1. lambda表达式的使用
第38和第70行中,原适用于Python2.7的代码无法正常运行,提示 invalid syntax。貌似是Python3中,在lambda表达式中使用元组的方式和Python2.7不一样。
我改了一下代码,语法问题没有了,可是预测结果不正常。于是就打印map()函数的返回值,试图调试。
2. 打印map()函数返回的对象
参见 https://www.cnblogs.com/lyy-totoro/p/7018597.html 的代码,先转为list再打印。
list1 = list(data)
print(list1)
打印输出表明,训练的值明显不对,到底是哪里的问题?
3. 真相【小】白
https://segmentfault.com/a/1190000000322433
关键句:在Python3中,如果不在map函数前加上list,lambda函数根本就不会执行。
于是加上list,就变成了最终的代码,工作正常。
只是“lambda函数根本就不会执行”这句,我没考证过,所以说真相小白。
原文链接:
零基础入门深度学习(1) - 感知器
https://www.zybuluo.com/hanbingtao/note/433855
用感知机(Perceptron)实现逻辑AND功能的Python3代码的更多相关文章
- 2. 感知机(Perceptron)基本形式和对偶形式实现
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量 ...
- 利用sublime的snippet功能快速创建代码段
在前端开发中我们经常会输入相同的一些基本代码,例如常用的jquery引用,bootstrap框架,cssreset等等,如果每次使用时在复制粘贴感觉很麻烦,这里介绍一种更为简洁的方法 利用sublim ...
- discuz论坛apache日志hadoop大数据分析项目:清洗数据核心功能解说及代码实现
discuz论坛apache日志hadoop大数据分析项目:清洗数据核心功能解说及代码实现http://www.aboutyun.com/thread-8637-1-1.html(出处: about云 ...
- 全国天气预报信息数据 API 功能简介与代码调用实战视频
此文章对开放数据接口 API 之「全国天气预报信息数据 API」进行了功能介绍.使用场景介绍以及调用方法的说明,供用户在使用数据接口时参考之用,并对实战开发进行了视频演示. 1. 产品功能 接口开放了 ...
- 感知机(perceptron)概念与实现
感知机(perceptron) 模型: 简答的说由输入空间(特征空间)到输出空间的如下函数: \[f(x)=sign(w\cdot x+b)\] 称为感知机,其中,\(w\)和\(b\)表示的是感知机 ...
- 20151227感知机(perceptron)
1 感知机 1.1 感知机定义 感知机是一个二分类的线性分类模型,其生成一个分离超平面将实例的特征向量,输出为+1,-1.导入基于误分类的损失函数,利用梯度下降法对损失函数极小化,从而求得此超平面,该 ...
- 感知机(perceptron)
- 神经网络 感知机 Perceptron python实现
import numpy as np import matplotlib.pyplot as plt import math def create_data(w1=3,w2=-7,b=4,seed=1 ...
- jquery.cookie.js 操作cookie实现记住密码功能的实现代码
jquery.cookie.js操作cookie实现记住密码功能,很简单很强大,喜欢的朋友可以参考下. 复制代码代码如下: //初始化页面时验证是否记住了密码 $(document).ready( ...
随机推荐
- 在Tomcat中采用基于表单的安全验证
.概述 (1)基于表单的验证 基于From的安全认证可以通过TomcatServer对Form表单中所提供的数据进行验证,基于表单的验证使系统开发者可以自定义用户的登陆页面和报错页面.这种验证方法 ...
- java Properties类使用基础
*/ .hljs { display: block; overflow-x: auto; padding: 0.5em; color: #333; background: #f8f8f8; } .hl ...
- node-glob的*匹配
目录结构 src/js/libs/app.js src/js/index.js 测试脚本 var glob = require('glob') glob('', {}, function (err, ...
- Chrome浏览器调试Android的Webview
chrome://inspect Android:4.4+ Chrome 30+ 首次使用需要FQ
- 百度坐标(BD-09)、国测局坐标(火星坐标,GCJ-02)和WGS-84坐标互转
// 坐标转换 var coordTransform = (function () { // 一些常量 var PI = 3.1415926535897932384626; var X_PI = 3. ...
- 浅谈python模块的导入操作
1.什么是模块 在Python中有一个概念叫做模块(module). 所谓模块,就是将代码量较大的程序分割成多个有组织的,彼此独立但双能互相交互的代码片段, 这些自我包含的有组织的代码段就是模块. 2 ...
- 洛谷 [P1020] 导弹拦截 (N*logN)
首先此一眼就能看出来是一个非常基础的最长不下降子序列(LIS),其朴素的 N^2做法很简单,但如何将其优化成为N*logN? 我们不妨换一个思路,维护一个f数组,f[x]表示长度为x的LIS的最大的最 ...
- Kibana安装配置
Kibana 是一个开源的分析和可视化平台,是ELK的重要部分.Kibana提供搜索.查看和与存储在 Elasticsearch 索引中的数据进行交互的功能.开发者或运维人员可以轻松地执行高级数据分析 ...
- 本地Linux服务器上配置Git
当我们需要拉取远程服务器代码到本地服务器时,我们首先要确定已经配置了正确的Git账号,可以从~/.gitconfig文件(为隐藏文件,需要使用ls -a查看),以及~/.ssh下的id_rsa.pub ...
- PyPI使用国内源
默认的pip源的速度实在无法忍受,于是便搜集了一些国内的pip源,如下: 阿里云 https://mirrors.aliyun.com/pypi/simple/中国科技大学 https://pypi. ...