Cheolsoo is a cryptographer in ICPC(International Cryptographic Program Company). Recently, Cheolsoo developed a cryptographic algorithm called ACM(Advanced Cryptographic Method). ACM uses a key to encrypt
a message. The encrypted message is called a cipher text. In ACM, to decrypt a cipher text, the same key used in the encryption should be applied. That is, the encryption key and the decryption key are the same. So, the sender and receiver should
agree on a key before they communicate securely using ACM. Soon after Cheolsoo finished the design of ACM, he asked its analysis on security to Younghee who is a cryptanalyst in ICPC.

Younghee has an interest in breaking cryptosystems. Actually, she developed many attacking methods for well-known cryptographic algorithms. Some cryptographic algorithms have weak keys. When a message is encrypted with a weak key, the message can be
recovered easily without the key from the cipher text. So, weak key should not be used when encrypting a message. After many trials, she found the characteristic of weak keys in ACM. ACM uses a sequence of mutually distinct positive integers (N1N2,..., Nk) as
a key. Younghee found that weak keys in ACM have the following two special patterns:

There are four integers NpNqNrNs(1p < q < r < sk) in
the key such that
(1) Nq > Ns > Np > Nr or Nq < Ns < Np < Nr

For example, the key (10, 30, 60, 40, 20, 50) has the pattern in (1); (_, 30, 60, _, 20, 50). So, the key is a weak key in ACM. But, the key (30, 40, 10, 20, 80, 50, 60, 70) is not weak because it does not have
any pattern in the above.

Now, Younghee wants to find an efficient method to determine, for a given key, whether it is a weak key or not. Write a program that can help Younghee.

Input

The input consists of T test cases. The number of test cases T is given in the first line of the input file. Each test case starts with a line
containing an integer k, the length of a sequence repressenting a key, 4k5,
000. In the next line, k mutually distinct positive integers are given. There is a single space between the integers, and the integers are between 1 and 100,000, both inclusive.

Output

Print exactly one line for each test case. Print `YES' if the sequence is a weak key. Otherwise, print `NO'.

The following shows sample input and output for three test cases.

Sample Input

3
6
10 30 60 40 20 50
8
30 40 10 20 80 50 60 70
4
1 2 20 9

Sample Output

YES
NO
NO

要求找到4个整数Np、Nq、Nr、Ns(1<= p < q < r < s <= k)s.t. Nq > Ns > Np > Nr or Nq < Ns < Np < Nr。

先看第一种情况,下标第二大的,值最大,而下标第三大的,值最小,下标最小和最大的都插在了中间,确定这个要求后,先想到dfs求解,但是考虑到5000这个数量比较大,怕函数进出栈太慢。

直接枚举四个值时间复杂度又太高了,所以只枚举两个,枚举Ns和Np,然后记录找到Nq和Nr。

用了两个标记数组, l[i][j] 表示下标小于j且值比Ni大的数中最小值的位置,r[i][j] 表示下标大于j且值比Ni小的数中最大值的位置。

最后在枚举判断就完成了第一种情况。第二种情况直接把数组翻转,然后在判断一次就行了。

AC代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <stack>
#include <queue>
#include <bitset>
#include <cassert>
#include <cmath>
#include <functional>

using namespace std;

const int maxn = 5005;
int num[maxn], l[maxn][maxn], r[maxn][maxn];
// l[i][j]表示下标小于j且值比Ni大的数中最小值的位置
// r[i][j]表示下标大于j且值比Ni小的数中最大值的位置
int k;

bool solve()
{
	for (int i = 1; i <= k; i++) {
		l[i][0] = 0;
		for (int j = 1; j < i; j++) { // 枚举Nq和Nr,找Np
			if (num[i] >= num[j]) {
				l[i][j] = l[i][j - 1];
			}
			else if (!l[i][j - 1] || num[j] < num[l[i][j - 1]]) {
				l[i][j] = j;
			}
			else {
				l[i][j] = l[i][j - 1];
			}
		}

	}

	for (int i = 1; i <= k; i++) {
		r[i][k + 1] = 0;
		for (int j = k; j > i; j--) {// 枚举Nq和Nr,找Ns
			if (num[i] <= num[j]) {
				r[i][j] = r[i][j + 1];
			}
			else if (!r[i][j + 1] || num[j] > num[r[i][j + 1]]) {
				r[i][j] = j;
			}
			else {
				r[i][j] = r[i][j + 1];
			}
		}
	}

	//i是q,j是r
	for (int i = 1; i <= k; i++) {
		for (int j = i + 1; j <= k; j++) {
			if (!l[j][i - 1] || !r[i][j + 1] || num[i] <= num[j]) {
				continue;
			}
			int p = l[j][i - 1], s = r[i][j + 1];
			if (num[j] < num[p] && num[p] < num[s] && num[s] < num[i]) {
				return true;
			}
		}
	}
	return false;
}

int main()
{
	ios::sync_with_stdio(false);
	int T;
	cin >> T;
	while (T--) {
		cin >> k;
		for (int i = 1; i <= k; i++) {
			cin >> num[i];
		}

		if (solve()) {
			cout << "YES\n";
		}
		else {
			reverse(num + 1, num + k + 1);
			if (solve()) {
				cout << "YES\n";
			}
			else {
				cout << "NO\n";
			}
		}
	}

	return 0;
}

UVa - 1618 - Weak Key的更多相关文章

  1. UVA - 1618 Weak Key(RMQ算法)

    题目: 给出k个互不相同的证书组成的序列Ni,判断是否存在4个证书Np.Nq.Nr.Ns(1≤p<q<r<s≤k)使得Nq>Ns>Np>Nr或者Nq<Ns&l ...

  2. 【习题 8-16 UVA - 1618】Weak Key

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 枚举N[q]和N[r]的位置 因为N[q]是最大值,且N[r]是最小值. 且它们是中间的两个. 枚举这两个可以做到不重复枚举. 然后 ...

  3. 弱键(Weak Key, ACM/ICPC Seoul 2004, UVa1618)

    I think: 给出k(4≤k≤5000)个互不相同的整数组成的序列Ni,判断是否存在4个整数Np.Nq.Nr和Ns(1≤p<q<r<s≤k),使得Nq>Ns>Np&g ...

  4. 紫书 习题 8-16 UVa 1618 (中途相遇法)

    暴力n的四次方, 然而可以用中途相遇法的思想, 分左边两个数和右边两个数来判断, 最后合起来判断. 一边是n平方logn, 合起来是n平方logn(枚举n平方, 二分logn) (1)两种比较方式是相 ...

  5. UVA1618-Weak Key(RMQ)

    Problem UVA1618-Weak Key Accept: 103  Submit: 588Time Limit: 3000 mSec Problem Description Cheolsoo ...

  6. 多线程爬坑之路-Thread和Runable源码解析

    多线程:(百度百科借一波定义) 多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提 ...

  7. java中Map,List与Set的区别(转)

    Set,List,Map的区别 java集合的主要分为三种类型: Set(集) List(列表) Map(映射) 要深入理解集合首先要了解下我们熟悉的数组: 数组是大小固定的,并且同一个数组只能存放类 ...

  8. 浅谈Java中的Set、List、Map的区别(转)

    对JAVA的集合的理解是想对于数组: 数组是大小固定的,并且同一个数组只能存放类型一样的数据(基本类型/引用类型),JAVA集合可以存储和操作数目不固定的一组数据. 所有的JAVA集合都位于 java ...

  9. des (C语言)

    /** * \file des.h * * \brief DES block cipher * * Copyright (C) 2006-2010, Brainspark B.V. * * This ...

随机推荐

  1. Window下使用ftp命令往Linux中发送文件

    操作步骤:首先,切换到文件目录1.ftp ip地址2.连接成功后,输入正确的用户名和密码.3.binary(表示以二进制的格式传送)4.put/get 文件名(或文件的绝对路径) 退出:bye

  2. south 命令学习

    south 命令学习 概述 在django某个版本之前,django自身提供一个创建数据库的命令-syncdb,它会根据model来创建相应的表,但是这个命令不好的地方在于,如果想要对model进行更 ...

  3. Python 2.7 闭包的局限

    想法源自:http://stackoverflow.com/questions/141642/what-limitations-have-closures-in-python-compared-to- ...

  4. Openstack:Instance cannot ping by domain name

    Issue: When you created an instance inside Openstack, you may find that you cannot ping address by d ...

  5. SQL语句常见问题的总结(持续更新)

    语言问题 修改语言注册表\HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432\ORACLE\KEY_DevSuitHome1中的NLS_LANG修改为AMERICAN_AMERIC ...

  6. 错误问题:OpenGL version to old,GLViewinitWithRect(const stdbasic_stringchar,stdchar_traitschar,stdalloca

     1电脑装成Linux之后,在Linux里面装虚拟机运行cocos2d-x-3.2时报如下错误: plan3d.exe!cocos2d::GLView::initWithRect(const st ...

  7. Android全屏截图的方法,返回Bitmap并且保存在SD卡上

    Android全屏截图的方法,返回Bitmap并且保存在SD卡上 今天做分享,需求是截图分享,做了也是一个运动类的产品,那好,我们就直接开始做,考虑了一下,因为是全屏的分享,所有很自然而然的想到了Vi ...

  8. ROS常用三維機器人仿真工具Gazebo教程匯總

    參考網址: 1. http://gazebosim.org/tutorials 2. http://gazebosim.org/tutorials/browse Gazebo Tutorials Ga ...

  9. 给定整数a1、a2、a3、...、an,判断是否可以从中选出若干个数,使得它们的和等于k(k任意给定,且满足-10^8 <= k <= 10^8)。

    给定整数a1.a2.a3.....an,判断是否可以从中选出若干个数,使得它们的和等于k(k任意给定,且满足-10^8 <= k <= 10^8). 分析:此题相对于本节"寻找满 ...

  10. 程序员的自我修养-----Java开发的必须知道的几个注意点

    1. 将一些需要变动的配置写在属性文件中 比如,没有把一些需要并发执行时使用的线程数设置成可在属性文件中配置.那么你的程序无论在DEV环境中,还是TEST环境中,都可以顺畅无阻地运行,但是一旦部署在P ...