所谓排列,是指从给定的元素序列中依次取出元素,需要考虑取出顺序。比如,取出元素3, 5,因取出顺序的不同,则形成的序列{3, 5}与{5, 3}是不同的排列序列。对于长度为n的元素序列取出k个元素,则共有A(n, k)种取法。所谓组合,也是从元素序列中依次取出元素,与排列不同的是不需要考虑取出顺序;因此其取法数为C(n, k)。

LeetCode有两个问题分属于组合、排列:77. Combinations46. Permutations

组合

要求给出对于序列1~n 的取出k个元素的各种取法。采用DFS模拟组合时,可看做节点i与节点j(j = i+1, … , n)都相连接,然后DFS遍历整张有向图,代码实现如下:

public List<List<Integer>> combine(int n, int k) {
List<List<Integer>> result = new ArrayList<>();
if (n <= 0 || n < k) {
return result;
}
List<Integer> tmp = new ArrayList<>();
dfs(n, k, 1, tmp, result);
return result;
} // DFS for combination
private void dfs(int n, int k, int start,
List<Integer> tmp, List<List<Integer>> result) {
if (tmp.size() == k) {
result.add(new ArrayList<Integer>(tmp));
return;
}
for (int i = start; i <= n; i++) {
tmp.add(i);
dfs(n, k, i + 1, tmp, result);
tmp.remove(tmp.size() - 1); // remove the last
}
}

排列

DFS实现排列与组合相类似,唯一不同之处在于,节点i与其他所有节点都连接。因此,所构造的图是一个完全连通图。DFS实现排列如下:

public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
if (nums.length == 0) {
return result;
}
List<Integer> tmp = new ArrayList<>();
dfs(nums, tmp, result);
return result;
} // DFS for permutation
private void dfs(int[] nums, List<Integer> tmp,
List<List<Integer>> result) {
int n = nums.length;
if (tmp.size() == n) {
result.add(new ArrayList<>(tmp));
return;
}
for (int i = 0; i < n; i++) {
// nums[i] has not been visited
if (!tmp.contains(nums[i])) {
tmp.add(nums[i]);
dfs(nums, tmp, result);
tmp.remove(tmp.size() - 1);
}
}
}

上述代码中,可以用一个visit数组来标记节点是否被访问,这样优化将contains的时间复杂度从\(O(n)\)优化到\(O(1)\)。

DFS实现排列组合的更多相关文章

  1. Codeforces 991E. Bus Number (DFS+排列组合)

    解题思路 将每个数字出现的次数存在一个数组num[]中(与顺序无关). 将出现过的数字i从1到num[i]遍历.(i from 0 to 9) 得到要使用的数字次数数组a[]. 对于每一种a使用排列组 ...

  2. [leetcode] 题型整理之排列组合

    一般用dfs来做 最简单的一种: 17. Letter Combinations of a Phone Number Given a digit string, return all possible ...

  3. Day4:T3搜索 T4数学题排列组合

    T3:搜索 很出名的题吧,费解的开关 同T2一样也是一题很考思考的 附上题解再解释吧: 对于每个状态,算法只需要枚举第一行改变哪些灯的状态,只要第一行的状态固定了,接下来的状态改变方法都是唯一的:每一 ...

  4. 2017ACM暑期多校联合训练 - Team 1 1006 HDU 6038 Function (排列组合)

    题目链接 Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m ...

  5. LeetCode OJ:Combinations (排列组合)

    Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exampl ...

  6. 学习sql中的排列组合,在园子里搜着看于是。。。

    学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...

  7. .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)

    今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...

  8. 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  9. 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

随机推荐

  1. 声音变调算法PitchShift(模拟汤姆猫) 附完整C++算法实现代码

    上周看到一个变调算法,挺有意思的,原本计划尝试用来润色TTS合成效果的. 实测感觉还需要进一步改进,待有空再思考改进方案. 算法细节原文,移步链接: http://blogs.zynaptiq.com ...

  2. CTF---Web入门第十六题 天下武功唯快不破

    天下武功唯快不破分值:10 来源: 北邮天枢战队 难度:易 参与人数:10787人 Get Flag:2264人 答题人数:3373人 解题通过率:67% 看看响应头 格式:CTF{ } 解题链接: ...

  3. BZOJ:1185: [HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...

  4. 利用jQuery移除和添加图片

    1.样式 <style type="text/css">     .changeImage{          background:url(images/right. ...

  5. UEP-添加表格

    UEP中添加新的表格标签:function initCustomToolBar(){ var strHtml="<table> <tr> <td id=\&qu ...

  6. Android开发——BroadcastReceiver广播的使用

    想要了解广播定义及相关原理的可以看下这一篇BroadcastReceiver史上最全面解析 简单地对广播进行分类吧,广播有两个角色,一个是广播发送者,另外一个是广播接收者 广播按照类型分为两种,一种是 ...

  7. dedecms中{dede:myad name='about'/} 修改内容

    网站首页index.htm中调用这个命令,显示一段文字,但是想要修改内容.所以想知道这个命令指定的文件内容在哪里寻找或者指定内容在哪里修改? 匿名 | 浏览 6036 次 发布于2014-02-19 ...

  8. 本地访问服务器上的wamp

    一,httpd-vhosts.conf文件           # Virtual Hosts #     ServerName localhost     DocumentRoot D:/wamp/ ...

  9. Visio绘制用例图问题集锦

    1.Visio画UML用例图没有include关系的解决方法 发现Visio UML用例里面找不到include关系,即"箭头"+"<<include> ...

  10. MySql优化子查询

    用子查询语句来影响子查询中产生结果rows的数量和顺序. For example: SELECT * FROM t1 WHERE t1.column1 IN (SELECT column1 FROM ...