[SDOI 2015]约数个数和
Description
Input
输入文件包含多组测试数据。
Output
T行,每行一个整数,表示你所求的答案。
Sample Input
7 4
5 6
Sample Output
121
HINT
1<=N, M<=50000
题解
先给出一个结论: $$ \sigma_0(ij) = \sum_{a | i} \sum_{b | j} [gcd(a, b) = 1]$$
证明(摘自Ken_He):
我们令 $i = p_1^{a_1} p_2^{a_2} \cdots$ , $j = p_1^{b_1} p_2^{b_2} \cdots$ , $d | ij$ 且 $d = p_1^{c_1} p_2^{c_2} \cdots$ , 则 $c_n \le a_n + b_n$ 。
考虑如何不重复地统计每一个 $d$ : 令 $c_n = A_n + B_n$ , 其中 $A_n$ 和 $B_n$ 分别为 $i$ 和 $j$ 对 $c_n$ 的贡献, 则我们要求 \begin{cases}B_n = 0 & A_n < a_n \\B_n \ge 0 & A_n = a_n\end{cases}
这样一来, $c_n$ 的表示形式就变成唯一的了,因而不会被重复统计。我们再考虑如何统计这样的 $A_n$ 和 $B_n$ :我们令 $A_n' = a_n - A_n$ ,则约束条件变为\begin{cases}B_n = 0 & A_n' \ne 0 \\B_n \ge 0 & A_n' = 0\end{cases}
等价于 $gcd(a, b) = 1$ 。
因此得证。
\begin{aligned}ans&=\sum_{i=1}^N\sum_{j=1}^M\sum_{a\mid i}\sum_{b\mid j}[gcd(a,b)=1]\\&=\sum_{i=1}^N\sum_{j=1}^M\sum_{a\mid i}\sum_{b\mid j}\sum_{d\mid gcd(a,b)}\mu(d)\\&=\sum_{a=1}^N\sum_{b=1}^M\sum_{i=1}^{\left\lfloor\frac{N}{a}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{M}{b}\right\rfloor}\sum_{d\mid gcd(a,b)}\mu(d)\\&=\sum_{d=1}^{min\{N,M\}}\mu(d)\sum_{a=1}^{\left\lfloor\frac{N}{d}\right\rfloor}\sum_{b=1}^{\left\lfloor\frac{M}{d}\right\rfloor}\left\lfloor\frac{N}{ad}\right\rfloor\left\lfloor\frac{M}{bd}\right\rfloor\\&=\sum_{d=1}^{min\{N,M\}}\mu(d)\left(\sum_{a=1}^{\left\lfloor\frac{N}{d}\right\rfloor}\left\lfloor\frac{N}{ad}\right\rfloor\right)\left(\sum_{b=1}^{\left\lfloor\frac{M}{d}\right\rfloor}\left\lfloor\frac{M}{bd}\right\rfloor\right)\end{aligned}
设 $t(x)=\sum_{i=1}^x \left\lfloor\frac{x}{i}\right\rfloor$ ,
显然 $$\Rightarrow ans=\sum_{d=1}^{min\{N,M\}}\mu(d)\cdot t\left(\left\lfloor\frac{N}{d}\right\rfloor\right)\cdot t\left(\left\lfloor\frac{M}{d}\right\rfloor\right)$$
显然我们用 $O(n\sqrt n)$ 预处理出函数 $t$ ,再用 $O(T\sqrt n)$ 回答询问即可。
//It is made by Awson on 2018.1.22
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = ;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(LL x) {
if (x > ) write(x/);
putchar(x%+);
} int mu[N+], t[N+], n, m; void get_mu() {
int prime[N+], isprime[N+], tot = ;
memset(isprime, , sizeof(isprime)); isprime[] = , mu[] = ;
for (int i = ; i <= N; i++) {
if (isprime[i]) prime[++tot] = i, mu[i] = -;
for (int j = ; j <= tot && i*prime[j] <= N; j++) {
isprime[i*prime[j]] = ;
if (i%prime[j]) mu[i*prime[j]] = -mu[i];
else {mu[i*prime[j]] = ; break; }
}
mu[i] += mu[i-];
}
}
int get_t(int x) {
int ans = ;
for (int i = , last; i <= x; i = last+) {
last = x/(x/i); ans += (last-i+)*(x/i);
}
return ans;
} LL cal(int n, int m) {
if (n > m) Swap(n, m); LL ans = ;
for (int i = , last; i <= n; i = last+) {
last = Min(n/(n/i), m/(m/i));
ans += (LL)(mu[last]-mu[i-])*t[n/i]*t[m/i];
}
return ans;
}
void work() {
read(n), read(m); writeln(cal(n,m));
}
int main() {
int T; read(T); get_mu();
for (int i = ; i <= N; i++) t[i] = get_t(i);
while (T--) work();
return ;
}
[SDOI 2015]约数个数和的更多相关文章
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- SDOI 2015 约束个数和
Description: 共\(T \le 5 \times 10^4\)组询问, 每组询问给定\(n\)和\(m\), 请你求出 \[ \sum_{i = 1}^n \sum_{j = 1}^m \ ...
- 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...
- 【SDOI 2015】约数个数和
Problem Description 设 \(d(x)\) 为 \(x\) 的约数个数,给定 \(N\).\(M\),求 \[ \sum_{i=1}^N \sum_{j=1}^M d(ij) \] ...
- BZOJ 3994: [SDOI2015]约数个数和 [莫比乌斯反演 转化]
2015 题意:\(d(i)\)为i的约数个数,求\(\sum\limits_{i=1}^n \sum\limits_{j=1}^m d(ij)\) \(ij\)都爆int了.... 一开始想容斥一下 ...
- [BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT)
[BZOJ 3992] [SDOI 2015] 序列统计(DP+原根+NTT) 题面 小C有一个集合S,里面的元素都是小于质数M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数 ...
- 【BZOJ】3994: [SDOI2015]约数个数和
题意: \(T(1 \le T \le 50000)\)次询问,每次给出\(n, m(1 \le n, m \le 50000)\),求\(\sum_{i=1}^{n} \sum_{j=1}^{m} ...
- hdu1492(约数个数定理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1492 这里先讲一下约数个数定理: 对于正整数x,将其质因分解为 x = pow(p1, a) * po ...
- UVA294DIvisors(唯一分解定理+约数个数)
题目链接 题意:输入两个整数L,U(L <= U <= 1000000000, u - l <= 10000),统计区间[L,U]的整数中哪一个的正约数最多,多个输出最小的那个 本来 ...
随机推荐
- java————面向对象概念
面向对象 OO:面向对象 OOP:面向对象编程 OOA:面向对象分析 OOD:面向对象设计 面向对象的特征 继承,封装,多态 什么是对象? 对象是存在的具体实体,具有明确定义的特征和行为. 万物皆对象 ...
- hibernate框架学习笔记9:多对多关系案例
员工与角色案例: 一个员工可以是多种角色(总监,经理),一种角色可以是多个员工(保洁) 这里发现无法使用外键表达关系,多对多总是创建第三张表来维护关系 这张表至少两列,都是外键,分别引用两张表的主键 ...
- beta冲刺用户测评-咸鱼
测评人:庄加鑫-咸鱼 测评结果 一.使用体验数据加载响应很快!页面切换丝滑流畅!UI有点偏暗,有些字被覆盖了.页面布局过于居中,两侧空白范围较大.总体功能完善.二.登录.注册.忘记密码界面管理员登录 ...
- 学号:201621123032 《Java程序设计》第8周学习总结
1:本周学习总结 2:书面作业 2.1:ArrayList代码分析 2.1.1:解释ArrayList的contains源代码 Contains方法调用indexof方法,如果元素为null,则循环比 ...
- C++中文件的读写
C++中文件的读写 在C++中如何实现文件的读写? 一.ASCII 输出 为了使用下面的方法, 你必须包含头文件<fstream.h>(译者注:在标准C++中,已经使用<fstrea ...
- SpringMVC 无法访问到指定jsp页面可能的原因
当出现你的程序可以访问到对应的controller层.但是却无法访问对应的jsp文件时.你首先做的不是检查web.xml等配置文件,而是打开的服务器根文件检查对应路径下的文件是否存在.命名是否正确.命 ...
- 织梦dedecms默认网站地图sitemap.html优化
网站地图对于网站优化很重要,搜索引擎就是靠网站地图去收录网站页面,本文主要讲解优化织梦自带的网站地图功能. 织梦自带的网站地图使用方法:织梦后台--生成--HTML更新--更新网站地图,可以在 ...
- netty : NioEventLoopGroup 源码分析
NioEventLoopGroup 源码分析 1. 在阅读源码时做了一定的注释,并且做了一些测试分析源码内的执行流程,由于博客篇幅有限.为了方便 IDE 查看.跟踪.调试 代码,所以在 github ...
- ios开发常识(1)开发语言和参考资料
学iphone开发用的语言是object-c,object-c和c++,java还是有很大区别,如果你坚持学习iphone开发的话可以不学c++,java,直接学习这个语言,先入为主,可能觉得这个语言 ...
- MySql入门(2-2)创建数据库
mysql -u root -p; show databases; create database apigateway; use apigateway; show tables;