机器学习入门-集成算法(bagging, boosting, stacking)
目的:为了让训练效果更好
bagging:是一种并行的算法,训练多个分类器,取最终结果的平均值 f(x) = 1/M∑fm(x)
boosting: 是一种串行的算法,根据前一次的结果,进行加权来提高训练效果
stacking; 是一种堆叠算法,第一步使用多个算法求出结果,再将结果作为特征输入到下一个算法中训练出最终的预测结果
1.Bagging:全程boostap aggregation(说白了是并行训练一堆分类器)
最典型的算法就是随机森林
随机森林的意思就是特征随机抽取,即每一棵数使用60%的随机特征,数据随机抽取,即每一棵树使用的数据是60%-80%,这样做的目的是为了保证每一棵树的结果在输出是都存在差异。最后对输出的结果求平均
随机森林的优势
它能处理很高维度的数据,不需要进行特征选择
在训练后他能给出哪些特征的重要性,根据重要性我们也可以进行特征选择
特征重要性的计算方法:如果有特征是A,B,C,D 根据这4个特征求得当前的error,然后对B特征采用随机给定记为B*,对A,B*,C,D求error1,
如果error == error1 ,说明B特征不重要
如果error < error1 说明B特征的重要性很大
当随机森林树的个数超过一定数量后,就会上下浮动
2.Boosting: 是一种串行的算法,通过弱学习器开始加强,通过加权来训练
Fm(x) = Fm-1(x) + argmin(∑L(yi, Fm-1(x) + h(xi) )) 通过前一次的输出结果与目标的残差值,来训练下一颗树的结果(XGboost)
这里介绍一种Adaboost(双加权)
Adaboost 每一次使用一棵树,根据前一颗树的输出结果,来对数据进行加权,比如有5个数据,刚开始的权重都为0.2, 其中第3个数据被判错了,那么第3个数据的权重就为0.6,将经过加权后的数据输入到下一颗树中,再进行训练
根据每一棵树的准确率,再进行权重加权,获得最终的输出结果

对于数据的权重加和
3.Stacking : 聚合多个分类或回归模型
堆叠,拿来一堆直接上
可以堆叠各种各样的分类器(KNN, SVM, RF)
分阶段进行,第一个阶段可以使用多个分类器获得分类结果,第二阶段将分类结果作为特征输入到一个分类器中,得到最终的结果,缺点就是耗时
第一阶段 第二阶段
RF ----- 0 1 0 1 --作为特征--输出结果
LR ------ 1 0 1 0 -----LR-------1 0 1 0
DT -------1 1 0 1 训练模型
xgboost---- 1 1 0 1

机器学习入门-集成算法(bagging, boosting, stacking)的更多相关文章
- 机器学习 - 算法 - 集成算法 - 分类 ( Bagging , Boosting , Stacking) 原理概述
Ensemble learning - 集成算法 ▒ 目的 让机器学习的效果更好, 量变引起质变 继承算法是竞赛与论文的神器, 注重结果的时候较为适用 集成算法 - 分类 ▒ Bagging - bo ...
- 机器学习之——集成算法,随机森林,Bootsing,Adaboost,Staking,GBDT,XGboost
集成学习 集成算法 随机森林(前身是bagging或者随机抽样)(并行算法) 提升算法(Boosting算法) GBDT(迭代决策树) (串行算法) Adaboost (串行算法) Stacking ...
- 机器学习 —— 决策树及其集成算法(Bagging、随机森林、Boosting)
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 决策树--------------------------------------------- ...
- 机器学习基础—集成学习Bagging 和 Boosting
集成学习 就是不断的通过数据子集形成新的规则,然后将这些规则合并.bagging和boosting都属于集成学习.集成学习的核心思想是通过训练形成多个分类器,然后将这些分类器进行组合. 所以归结为(1 ...
- 机器学习入门-K-means算法
无监督问题,我们手里没有标签 聚类:相似的东西聚在一起 难点:如何进行调参 K-means算法 需要制定k值,用来获得到底有几个簇,即几种类型 质心:均值,即向量各维取平均值 距离的度量: 欧式距离和 ...
- 机器学习入门-Knn算法
knn算法不需要进行训练, 耗时,适用于多标签分类情况 1. 将输入的单个测试数据与每一个训练数据依据特征做一个欧式距离. 2. 将求得的欧式距离进行降序排序,取前n_个 3. 计算这前n_个的y值的 ...
- 机器学习——集成学习(Bagging、Boosting、Stacking)
1 前言 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测的分类器(errorrate < ...
- 一小部分机器学习算法小结: 优化算法、逻辑回归、支持向量机、决策树、集成算法、Word2Vec等
优化算法 先导知识:泰勒公式 \[ f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n \] 一阶泰勒展开: \[ f(x)\approx ...
- [机器学习]集成学习--bagging、boosting、stacking
集成学习简介 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务. 如何产生"好而不同"的个体学习器,是集成学习研究的核心. 集成学习的思路是通过 ...
随机推荐
- StreamSets 相关文章
相关streamsets 文章(不按顺序) 学习视频-百度网盘 StreamSets 设计Edge pipeline StreamSets Data Collector Edge 说明 streams ...
- centos7.x网卡bond配置
本文摘抄自 https://www.cnblogs.com/liwanggui/p/6807212.html centos7网卡bond配置 centos7网卡bond配置 1 备份网卡配置文件2 使 ...
- 前端基础之CSS快速入门
前一篇写了我们的Html的常用组件,当然那些组件在我们不去写样式的时候都是使用的浏览器的默认样式,可以说是非常之丑到爆炸了,我们肯定是不能让用户去看这样丑到爆炸的样式,所以我们在这里需要使用css样式 ...
- [转]Spring事务<tx:annotation-driven/>
在使用SpringMVC的时候,配置文件中我们经常看到 annotation-driven 这样的注解,其含义就是支持注解,一般根据前缀 tx.mvc 等也能很直白的理解出来分别的作用.<tx: ...
- 消息中间件 ActiveMQ的简单使用
一.AactiveMQ的下载和安装 1. 下载ActiveMQ 地址:http://activemq.apache.org/activemq-5152-release.html 我这里下载的是wind ...
- Angular 4.0 安装组件
安装组件 ng g componet 组件名
- Spring MVC 3.0 深入及对注解的详细讲解[转载]
http://blog.csdn.net/jzhf2012/article/details/8463783 核心原理 1. 用户发送请求给服务器.url:user.do 2. ...
- Densenet 相关
https://github.com/flyyufelix/DenseNet-Keras
- 织梦SQL标签的使用
(>=DedeCMS 3,DedeCMS 4,DedeCMS 5) 名称:sql 功能:用于获取MySQL数据库内容的标签 语法: 1 2 3 {dede:sql sql='' appname= ...
- wxWidgets:动态EVENT绑定
我们已经看到如何使用静态EVENT TABLE来处理EVENT:但这种方式不够灵活.下面我们来看看如何在Event和处理函数间实现动态Bind. 仍然以那个简陋的Frame作为例子. 首先删除所有的静 ...