#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 10000
using namespace std;
int x,y,n,m,t,tot,sum,top,time;
int head[N],col[N],stack[N],dfn[N],low[N],a[N][N];
bool vis[N];
struct Edge
{
int from,next,to;
}edge[N];
int add(int x,int y)
{
tot++;
edge[tot].to=y;
edge[tot].next=head[x];
head[x]=tot;
}
int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return f*x;
}
int tarjan(int now)
{
//stack[]表示递归过程的栈,即用来判断该点是否已经加入到此次递归的栈中,在递归末尾,通过将vis置为false释放所有递归栈的元素
t=;
dfn[now]=low[now]=++time;//初始每一个点的low值dfn等于它的时间戳
stack[++top]=now; vis[now]=true;//将该点入栈,标记为在栈中
for(int i=head[now];i;i=edge[i].next)//更新于他相连的点的low值
{
x=edge[i].to;
if(vis[x]) low[now]=min(dfn[x],low[now]);//如果该点已经在栈中,直接更新来到该点的那个点的low,不需要递归查询
else if(!dfn[x])
{
tarjan(x);
low[now]=min(low[x],low[now]);//不在栈中,需要从该点继续递归拓展
}
}
if(low[now]==dfn[now])//说明以这个点结束强连通分量
{
sum++;// 强连通分量的个数加一
col[now]=sum;//将该点放在她所属的强连通分量了
for(;stack[top]!=now;top--)
{
col[stack[top]]=sum;
vis[stack[top]]=false;
}
vis[now]=false;
top--;
}
}
int main()
{
n=read(),m=read();
for(int i=;i<=m;i++)
{
x=read();y=read();
add(x,y);
}
for(int i=;i<=n;i++)
if(!dfn[i]) tarjan(i);
printf("%d",sum);
return ;
}

tarjan强联通分量(模板)的更多相关文章

  1. POJ 2186 Popular cows(Kosaraju+强联通分量模板)

    题目链接:http://poj.org/problem?id=2186 题目大意:给定N头牛和M个有序对(A,B),(A,B)表示A牛认为B牛是红人,该关系具有传递性,如果牛A认为牛B是红人,牛B认为 ...

  2. tarjan求强联通分量 模板

    void tarjan(int u) { dfn[u]=low[u]=++dfs_clock; stack_push(u); for (int c=head[u];c;c=nxt[c]) { int ...

  3. Tarjan强联通分量【模板】

    #include <algorithm> #include <cstdio> using namespace std; ); int n,m,v,u; int edgesum, ...

  4. cf999E (强联通分量模板题)

    给出n个点m条边的有向图,问至少添加多少条边使得任何点都可以从s点出发可达 #include<bits/stdc++.h> #define forn(i, n) for (int i = ...

  5. tarjan模板 强联通分量+割点+割边

    // https://www.cnblogs.com/stxy-ferryman/p/7779347.html ; struct EDGE { int to, nt; }e[N*N]; int hea ...

  6. 【POJ 1236 Network of Schools】强联通分量问题 Tarjan算法,缩点

    题目链接:http://poj.org/problem?id=1236 题意:给定一个表示n所学校网络连通关系的有向图.现要通过网络分发软件,规则是:若顶点u,v存在通路,发给u,则v可以通过网络从u ...

  7. 强联通分量-tarjan算法

    定义:在一张有向图中,两个点可以相互到达,则称这两个点强连通:一张有向图上任意两个点可以相互到达,则称这张图为强连通图:非强连通图有极大的强连通子图,成为强联通分量. 如图,{1},{6}分别是一个强 ...

  8. 【强联通分量缩点】【Tarjan】bzoj1051 [HAOI2006]受欢迎的牛

    就是看是否有一些点,从其他任何点出发都可到达 定理:有向无环图中唯一出度为0的点,一定可以由任何点出发均可达. 所以缩点,若出度为零的点(强联通分量)唯一,则答案为该强联通分量中点的度数. 若不唯一, ...

  9. 强联通分量(tarjan算法+算法简介)

    题目描述 ›对于一个有向图顶点的子集S,如果在S内任取两个顶点u和v,都能找到一条从u到v的路径,那么就称S是强连通的.如果在强连通的顶点集合S中加入其他任意顶点集合后,它都不再是强连通的,那么就称S ...

随机推荐

  1. m_Orchestrate learning system---三十三、公共变量多弄成全局变量

    m_Orchestrate learning system---三十三.公共变量多弄成全局变量 一.总结 一句话总结:比如班级id,小组id,这样省事,而且减少数据库的访问,加快访问速度,而且节约代码 ...

  2. 为arm 编译包含gd的php5

    1) 下载gd的各种依赖包. 但是不要下载gd本身,因为这是包含在php里的. 探索的时候也下载了 libvpx freetype,可惜最后的编译没过,就没有用上 2)编译各种(编译前记得把各种环境变 ...

  3. [.NET源码] EF的增删改查

    EF的增删改查 创建上下文对象:WordBoradEntities db = new WordBoradEntities(); 一.添加: //1.1创建实体对象 User uObj = new Us ...

  4. Python 运算符重载

    https://www.cnblogs.com/hotbaby/p/4913363.html

  5. java final修饰变量时的一种情况

    有如下一种场景. 1.在文件PaymentConfig.java中存在如下变量public static final desc="描述" 2.类Test.java中使用了desc变 ...

  6. android----AsyncHttpClient的get,post和图片上传

    async-http-client库是一个基于回调函数的Http异步通信客户端Android组件,是在Apache的HttpClient库的基础上开发构建而成的. Eclipse使用:导入androi ...

  7. Android开发中需要注意哪些坑

    作为一个有两.三年Android应用开发经验的码农,自然会遇到很多坑,下面是我能够想起的一些坑(实践证明不记笔记可不是个好习惯),后面有想到其它坑会陆续补上. 1.在Android library中不 ...

  8. 基于DOMContentLoaded实现文档加载完成后执行的方法

    我们有时可能需要一些在页面加载完成之后执行的方法,其实js原生就提供了onload方法,所以我们最简单的办法就是直接给onload赋值一个函数,在页面加载完成之后就会自动执行 widnow.onloa ...

  9. hdu 6395 Sequence (简单矩乘)

    P/n大多数情况是不变的, 取值只有$O(\sqrt{P})$种, 可以用$p/(p/i)$跳过重复的值, 复杂度$O(logn\sqrt{P})$ 要注意 P跟模数P有冲突 要特判p/i==0和p/ ...

  10. 浅浅的分析LED呼吸灯的实现和PWM的关系

    前言 在本周,我们在python课上做了一个实验,用ARDUINO使小LED灯模仿出呼吸灯的效果,实验进行的很成功,但是机器当仅输出高/低电平的时候是怎么样才能做到渐亮渐暗(输出电压)的变化呢?在这里 ...