Description

JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。

JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任

何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。

例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的

分配方法:

A:麻花,B:麻花、包子

A:麻花、麻花,B:包子

A:包子,B:麻花、麻花

A:麻花、包子,B:麻花

Input

输入数据第一行是同学的数量N 和特产的数量M。

第二行包含M 个整数,表示每一种特产的数量。

N, M 不超过1000,每一种特产的数量不超过1000

Output

输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果

MOD 1,000,000,007 的数值就可以了。

Sample Input

5 4

1 3 3 5

Sample Output

384835


思路

首先如果可以有人不拿到就很好做

那么就可以考虑容斥

用\(f_i\)表示有i个人分包裹并且每个人都拿到的方案数

然后简单容斥就可以了


#include<bits/stdc++.h>

using namespace std;

const int N = 2010;
const int Mod = 1e9 + 7; int n, m, a[N], f[N];
int fac[N], inv[N]; int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
} int sub(int a, int b) {
return (a -= b) < 0 ? a + Mod : a;
} int mul(int a, int b) {
return 1ll * a * b % Mod;
} int fast_pow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = mul(res, a);
b >>= 1;
a = mul(a, a);
}
return res;
} int C(int a, int b) {
return mul(fac[a], mul(inv[a - b], inv[b]));
} int main() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= m; i++) scanf("%d", &a[i]); fac[0] = inv[0] = 1;
for (int i = 1; i < N; i++) fac[i] = mul(fac[i - 1], i);
inv[N - 1] = fast_pow(fac[N - 1], Mod - 2);
for (int i = N - 2; i >= 1; i--) inv[i] = mul(inv[i + 1], i + 1); f[1] = 1;
for (int i = 2; i <= n; i++) {
int cur = 1;
for (int j = 1; j <= m; j++) {
cur = mul(cur, C(i + a[j] - 1, i - 1));
}
for (int j = 1; j < i; j++) {
cur = sub(cur, mul(C(i, j), f[j]));
}
f[i] = cur;
}
printf("%d", f[n]);
return 0;
}

BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】的更多相关文章

  1. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  2. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  3. 【BZOJ4710】[JSOI2011]分特产(容斥)

    [BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...

  4. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  5. luogu 5505 [JSOI2011]分特产 广义容斥

    共有 $m$ 种物品,每个物品 $a[i]$ 个,分给 $n$ 个人,每个人至少要拿到一件,求方案数. 令 $f[i]$ 表示钦定 $i$ 个没分到特产,其余 $(n-i)$ 个人随便选的方案数,$g ...

  6. BZOJ4710: [Jsoi2011]分特产 组合数学 容斥原理

    题意:把M堆特产分给N个同学,要求每个同学至少分到一种特产,共有多少种分法? 把A个球分给B个人的分法种数:(插板法,假设A个球互不相同,依次插入,然后除以全排列去重) C(A,B+A) 把M堆特产分 ...

  7. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  8. BZOJ4710 [Jsoi2011]分特产 容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4710 题解 本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.c ...

  9. BZOJ4710 JSOI2011分特产(容斥原理+组合数学)

    显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...

随机推荐

  1. Beta冲刺

    第一天 日期:2018/6/24 1 今日完成任务情况. 妥志福.牛瑞鑫: 完成任务:数据库设计完成数据导入成功 王胜海.马中林: 完成任务:代码规范检查 董润园.邓英蓉: 完成任务:平台基本功能黑盒 ...

  2. C++学习笔记(一)——一个字符串分割和统计的工具(TextUtils)

    第一讲先从一个实例开始——我们需要完成一个遍历文件并统计单词出现次数的任务.分解功能:首先,按行读取文件并舍弃可能的空行.其次,将每一行都按照空格划分单词.因为可能存在标点符号,我们还需要将标点符号都 ...

  3. Style、ControlTemplate 和 DataTemplate 触发器

    本文摘要:    1:属性触发器:    2:数据触发器:    3:事件触发器: Style.ControlTemplate 和 DataTemplate 都有触发器集合.    属性触发器只检查W ...

  4. 44 CSS 浮动 模态框 定位

    一.浮动 float : 浮动的盒子不占原来的位置,其下方的盒子会上移 父盒子会发生塌陷现象.同一级盒子right浮动,同级左边的盒子需要左浮动,right浮动的盒子才能上来 由于浮动框不在文档的普通 ...

  5. python-day46--前端基础之html

    一.html是什么? 超文本标记语言(Hypertext Markup Language,HTML)通过标签语言来标记要显示的网页中的各个部分.一套规则,浏览器认识的规则 浏览器按顺序渲染网页文件,然 ...

  6. python-day7--%s与%d的使用,python2中的input及raw_input

    #coding:utf-8 #utf-8格式打开#%s %d# name='egon'# age=18# print('my name is',name)# print('my name is my ...

  7. UVA-1374 Power Calculus (迭代加深搜索)

    题目大意:问最少经过几次乘除法可以使x变成xn. 题目分析:迭代加深搜索. 代码如下: # include<iostream> # include<cstdio> # incl ...

  8. POJ-1129 Channel Allocation (DFS)

    Description When a radio station is broadcasting over a very large area, repeaters are used to retra ...

  9. quartz---触发job时间和结束时间

    quartz:Trigger:触发job时间和结束时间 package com.imooc.demo.helloQuartz; import java.text.SimpleDateFormat; i ...

  10. IOS UI总结

    一.UIView常见属性 1.frame  位置和尺寸(以父控件的左上角为原点(0,0)) 2.center 中点(以父控件的左上角为原点(0,0)) 3.bounds  位置和尺寸(以自己的左上角为 ...