LINK


思路

首先在加入几个点之后所有的点都只有三种状态

一个是在独立集中,一个是和独立集联通,还有一个是没有被访问过

然后前两个状态是可以压缩起来的

因为我们只需要记录下当前独立集大小和是否被访问过,然后每次加点我们直接枚举加入独立集中的点然后周围联通的点都可以一起访问,只要保证当前枚举的点没有被访问过就可以了

因为这样选出来的当前的点一定是不是独立集中的且不和独立集联通的

然后每次因为加入了很多个点,我们设\(w_i\)表示和i联通(包括i)的所有点的集合

然后就可以用排列数算了,只需要保证当前选出来的加入独立集的点在所有其他点之前算就可以了

所以是\(dp_{i+1,s|w_{j}}+=dp_{i,s}*P_{n-cnt[s]-1}^{cnt[w_j\oplus(w_j\&s)]-1}\)


#include<bits/stdc++.h>

using namespace std;

const int Mod = 998244353;
const int N = 21; int n, m, w[N];
int fac[N], inv[N], cnt[1 << N];
int dp[N][1 << N]; int main() {
#ifdef dream_maker
freopen("input.txt", "r", stdin);
#endif
function<int(int a, int b)> add = [&](int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
}; function<int(int a, int b)> sub = [&](int a, int b) {
return (a -= b) < 0 ? a + Mod : a;
}; function<int(int a, int b)> mul = [&](int a, int b) {
return (long long) a * b % Mod;
}; function<int(int a, int b)> fast_pow = [&](int a, int b) {
int res = 1;
for (; b; b >>= 1, a = mul(a, a))
if (b & 1) res = mul(res, a);
return res;
}; function<int(int a, int b)> P = [&](int a, int b) {
return (a < b) ? 0 : mul(fac[a], inv[a - b]);
}; scanf("%d %d", &n, &m);
int up = (1 << n) - 1;
for (int i = 1; i <= n; i++) w[i] = 1 << (i - 1);
for (int i = 1; i <= m; i++) {
int u, v; scanf("%d %d", &u, &v);
w[u] |= 1 << (v - 1);
w[v] |= 1 << (u - 1);
}
inv[0] = fac[0] = 1;
for (int i = 1; i <= n; i++) fac[i] = mul(fac[i - 1], i);
inv[n] = fast_pow(fac[n], Mod - 2);
for (int i = n - 1; i >= 1; i--) inv[i] = mul(inv[i + 1], i + 1);
for (int i = 1; i <= up; i++) {
for (int j = 1; j <= n; j++) {
cnt[i] += (i >> (j - 1)) & 1;
}
}
dp[0][0] = 1;
for (int i = 1; i <= n; i++) {
for (int s = 0; s <= up; s++) if (dp[i - 1][s]) {
for (int j = 1; j <= n; j++) if (!((s >> (j - 1)) & 1)) {
dp[i][s | w[j]] = add(dp[i][s | w[j]], mul(dp[i - 1][s], P(n - cnt[s] - 1, cnt[w[j] ^ (w[j] & s)] - 1)));
}
}
}
for (int i = n; i >= 1; i--) if (dp[i][up]) {
printf("%d", mul(dp[i][up], inv[n]));
break;
}
return 0;
}

LOJ2540. 「PKUWC2018」随机算法【概率期望DP+状压DP】的更多相关文章

  1. loj2540 「PKUWC2018」随机算法 【状压dp】

    题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...

  2. LOJ2540「PKUWC2018」随机算法

    又是一道被咕了很久的题 貌似从WC2019之前咕到了现在 我们用f[i][s]表示现在最大独立集的大小为i 不可选集合为s 然后转移O(n)枚举加进来的点就比较简单啦 这个的复杂度是O(2^n*n^2 ...

  3. 【LOJ2540】「PKUWC2018」随机算法

    题意 题面 给一个 \(n\) 个点 \(m\) 条边的无向图.考虑如下求独立集的随机算法:随机一个排列并按顺序加点.如果当前点能加入独立集就加入,否则不加入.求该算法能求出最大独立集的概率. \(n ...

  4. 「PKUWC2018」随机算法

    题目 思博状压写不出是不是没救了呀 首先我们直接状压当前最大独立集的大小显然是不对的,因为我们的答案还和我们考虑的顺序有关 我们发现最大独立集的个数好像不是很多,可能是\(O(n)\)级别的,于是我们 ...

  5. 【LOJ】 #2540. 「PKUWC2018」随机算法

    题解 感觉极其神奇的状压dp \(dp[i][S]\)表示答案为i,然后不可选的点集为S 我们每次往答案里加一个点,然后方案数是,设原来可以选的点数是y,新加入一个点后导致了除了新加的点之外x个点不能 ...

  6. loj#2540. 「PKUWC2018」随机算法

    传送门 完了pkuwc咋全是dp怕是要爆零了-- 设\(f(S)\)表示\(S\)的排列数,\(S\)为不能再选的点集(也就是选到独立集里的点和与他们相邻的点),\(mx(S)\)表示\(S\)状态下 ...

  7. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

  8. LOJ2542. 「PKUWC2018」随机游走

    LOJ2542. 「PKUWC2018」随机游走 https://loj.ac/problem/2542 分析: 为了学习最值反演而做的这道题~ \(max{S}=\sum\limits_{T\sub ...

  9. 「PKUWC2018」随机游走(min-max容斥+FWT)

    「PKUWC2018」随机游走(min-max容斥+FWT) 以后题目都换成这种「」形式啦,我觉得好看. 做过重返现世的应该看到就想到 \(min-max\) 容斥了吧. 没错,我是先学扩展形式再学特 ...

随机推荐

  1. 数据库使用SSIS进行数据清洗教程

    OLTP系统的后端关系数据库用于存储不同种类的数据,理论上来讲,数据库中每一列的值都有其所代表的特定含义,数据也应该在存入数据库之前进行规范化处理,比如说“age”列,用于存储人的年龄,设置的数据类型 ...

  2. Java8 新特性之默认接口方法

    摘要: 从java8开始,接口不只是一个只能声明方法的地方,我们还可以在声明方法时,给方法一个默认的实现,我们称之为默认接口方法,这样所有实现该接口的子类都可以持有该方法的默认实现. · 待定 一. ...

  3. java开源类库pinyin4j的使用

    最近CMS系统为了增加查询的匹配率,需要增加拼音检索字段,在网上找到了pinyin4j的java开源类库,提供中文转汉语拼音(并且支持多音字), 呵呵,看了看他的demo,决定就用它了,因为我在实际使 ...

  4. Atcoder Yet Another Palindrome Partitioning(状压dp)

    Atcoder Yet Another Palindrome Partitioning 思路: 一个字符串满足条件的情况是奇数字母个数小于等于1,也就是异或起来是1<<j(0<=j& ...

  5. dat.gui.js

    ].appendChild(b)},inject:function(e,a){a=a||document;].appendChild(b)}}}(); dat.utils.common=functio ...

  6. Python 错误与异常

    2017-08-01 13:40:17 在程序运行过程中,总会遇到各种各样的错误. 有的错误是程序编写有问题造成的,比如本来应该输出整数结果输出了字符串,这种错误我们通常称之为bug,bug是必须修复 ...

  7. 二分检索函数lower_bound()和upper_bound()

    二分检索函数lower_bound()和upper_bound() 一.说明 头文件:<algorithm> 二分检索函数lower_bound()和upper_bound() lower ...

  8. putty xming gnome-session

    在windows里远程连接linux的最好方法. 比VNC方式好多了 1) xming启动一个窗口 2) putty 设置完X11 forwarding之后,远程登录 3) 在putty 里启动 gn ...

  9. android webservice 成功版(帅哥)

    package com.ts.xtweatherreport01;import java.io.UnsupportedEncodingException; import android.annotat ...

  10. C# 字符串 相关操作

    你或许知道你能使用String.Trim方法去除字符串的头和尾的空格,不幸运的是. 这个Trim方法不能去除字符串中间的C#空格. static void Main()         {       ...