python. pandas(series,dataframe,index) method test
python. pandas(series,dataframe,index,reindex,csv file read and write) method test
import pandas as pd
import numpy as np
def testpandas():
p = pd.Series([1,2,3,4,5],index =('a','b','c','d','e'))
print(p) cities = {'bejing':5500,'shanghai':5999,'shezhen':6000,'suzhou':None}
p2 = pd.Series(cities,name ='prices')
print(p2[:-1])
print('bejing' in p2)
print(p2.get('bejing'))
print(p2[p2 < 6000])
print(p.mean())
s = pd.Series(np.random.randn(5),index =[1,2,3,4,5])
print(np.random.randn(5)) le = p2 < 5600
print(le)
print(p2[le])
print('---------------------------')
p2['bejing']=7000
print(p2/2)
print(np.log(p2))
print('---------------------------')
com=p + p2
print(com)
print('---------------------------') data={'city':['bj','shenzhen','shanhai'],
'year':[2011,2013,2014],
'pop':[2100,2200,2430]}
df = pd.DataFrame(data,columns=['year','city','pop'],index=['one','two','three'])
print(df)
print('---------------------------')
df2=pd.DataFrame({'city':p2,'p1':p})
print(df2)
print('---------------------------') data2=[{'july':9999,'han':5000,'zewei':1000},{'july':9999,'han':5000,'zewei':1000},{'july':9999,'han':5000,'zewe2i':1000}]
df3=pd.DataFrame(data2)
print(df3)
print(df3.loc[[1,2]])
print(df3['han'])
print('---------------------------')
print(df3.iloc[0:2])
print('---------------------------')
df3.loc[1]=9000
df3['han']=9000
print(df3)
print(df3.shape[1])
print(df3.columns)
print('---------------------------')
print(df3.info())
df3.index.name='city'
df3.columns.name='info'
print('---------------------------')
print(df3)
row =df3.loc[0]
print(row) print(df3.sub(row,axis=1))
print('---------------------------')
col=df3['july']
print(col)
print(df3.sub(col,axis=0))
print('---------------------------')
index=pd.Index(['shanghai','guangzhou','shenzheng'])
print(index)
obj = pd.Series(range(3),index=['a','b','c'])
obj_index=obj.index
print(obj_index[1:]) print(df3.drop([0,1]))
print(df3) print(df3)
#read and write csv of pandas
goog =pd.read_csv(r'C:\python\demo\LiaoXueFeng\data\test_vrt.csv',index_col=0)
goog=goog.reindex(pd.to_datetime(goog.index))
print(goog.head())
print(goog.tail())
data2 = [{'july': 9999, 'han': 5000, 'zewei': 1000}, {'july': 9999, 'han': 5000, 'zewei': 1000},
{'july': 9999, 'han': 5000, 'zewe2i': 1000}]
df3 = pd.DataFrame(data2)
df3.to_csv(r'C:\python\demo\LiaoXueFeng\data\goog2.csv',encoding='GBK',mode='a')
python. pandas(series,dataframe,index) method test的更多相关文章
- python pandas.Series&&DataFrame&& set_index&reset_index
参考CookBook :http://pandas.pydata.org/pandas-docs/stable/cookbook.html Pandas set_index&reset_ind ...
- python pandas ---Series,DataFrame 创建方法,操作运算操作(赋值,sort,get,del,pop,insert,+,-,*,/)
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的, 导入如下: from panda ...
- Python Pandas -- Series
pandas.Series class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath ...
- python基础:如何使用python pandas将DataFrame转换为dict
之前在知乎上看到有网友提问,如何将DataFrame转换为dict,专门研究了一下,pandas在0.21.0版本中是提供了这个方法的.下面一起学习一下,通过调用help方法,该方法只需传入一个参数, ...
- Pandas数据结构(一)——Pandas Series
Pandas 是 Python 中基于Numpy构建的数据操纵和分析软件包,包含使数据分析工作变得快速简洁的高级数据结构和操作工具.通过Pandas Series 和 Pandas DataFrame ...
- pandas.Series
1.系列(Series)是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维标记数组.轴标签统称为索引. Pandas系列可以使用以下构造函数创建 - pandas.Series ...
- pandas数据结构:Series/DataFrame;python函数:range/arange
1. Series Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index). 1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会 ...
- 利用Python进行数据分析:【Pandas】(Series+DataFrame)
一.pandas简单介绍 1.pandas是一个强大的Python数据分析的工具包.2.pandas是基于NumPy构建的.3.pandas的主要功能 --具备对其功能的数据结构DataFrame.S ...
- Pandas 之 Series / DataFrame 初识
import numpy as np import pandas as pd Pandas will be a major tool of interest throughout(贯穿) much o ...
随机推荐
- 【Oracle】详解Oracle中NLS_LANG变量的使用
目录结构: contents structure [+] 关于NLS_LANG参数 NSL_LANG常用的值 在MS-DOS模式和Batch模式中设置NLS_LANG 注册表中NLS_LANG和系统环 ...
- 【Servlet】web.xml中url-pattern的用法
目录结构: contents structure [+] url-pattern的三种写法 servlet匹配原则 filter匹配原则 语法错误的后果 参考文章 一.url-pattern的三种写法 ...
- 开源的PaaS平台
原文地址:https://blog.csdn.net/mypods/article/details/9366465 1.Stackato Stackato 是一个应用平台,用来创建私有.安全和灵活的企 ...
- MySQL Cluster
MySQL Cluster MySQL集群一个非共享(shared nothing).分布式.分区系统,使用同步复制机制提供高可用和高性能. MySQL集群使用的是NDB引擎.NDB存储引擎会在节点间 ...
- df -h和du -sh显示结果不一样的原因及解决
一.背景:一台2T硬盘的mysql服务器,保存电话的CDR信息.按照历史数据的水平,一个月能生成20+GB的文件.然而短短的半年时间,满了?! 登录服务器看谁占了这么大的空间?好吧,slow-quer ...
- shell将脚本输出结果记录到日志文件
使用tee命令: sh portal/main.sh |tee log.txt 获取脚本父类路径cmddir="`dirname $0`"
- Spring JavaConfig
以前,Spring推荐使用XML的方式来定义Bean及Bean之间的装配规则,但是在Spring3.0之后,Spring提出的强大的JavaConfig这种类型安全的Bean装配方式,它基于Java代 ...
- [转]IC行业的牛人
转载的: 说来惭愧,我所了解的牛人也只是大学教授,工业界的高手了解的还太少,虽然我对教育界的牛人了解的也不多,但这里也要牢骚几句,论坛上的人好像只是认识Gray,Razavi,Allen,Lee, ...
- 关于thymeleaf+layout布局的使用方式,spring boot 访问页面(静态页面及jsp页面)
首先建立相同部分的html,这里我命名为layout.html,放在了`templates/layout'文件夹下,这个路径以后是会用到的,以下是我的layout的代码,比较粗糙. 但是应该会更好的帮 ...
- unity, ugui toggle, dynamic bool
假设Canvas_debugControl.cs有一个函数 public void showNextSceneButton(bool value){ ... } 欲将其添加到一个ugui toggle ...