数据分析与挖掘 - R语言:K-means聚类算法
一个简单的例子!
环境:CentOS6.5
Hadoop集群、Hive、R、RHive,具体安装及调试方法见博客内文档。
1、分析题目
--有一个用户点击数据样本(husercollect)
--按用户访问的时间(时)统计
--要求:分析时间和点击次数的聚类情况
2、数据准备
--创建临时表
DROP TABLE if exists tmp.t2_collect;
CREATE TABLE tmp.t2_collect(
h int,
cnt int
) COMMENT '用户点击数据临时表'; --插入临时表
insert overwrite table tmp.t2_collect
--分组
select a1.h, count(1) as cnt from(
--取出时
select hour(createtime) as h from bdm.husercollect
)a1
group by a1.h;
3、评估K值
#!/usr/bin/Rscript
library(RHive)
rhive.connect(host ='192.168.107.82')
data <- rhive.query('select h,cnt from tmp.t2_collect limit 6000')
x <- data$h
y <- data$cnt --组合成数据框
df <- data.frame(x, y)
--添加列名
colnames(df) <- c("hour", "cnt") --cluster.stats函数需要使用fpc库
library(fpc) --k取2到8评估K
K <- 2:8
--每次迭代30次,避免局部最优
round <- 30
rst <- sapply(K, function(i){
print(paste("K=",i))
mean(sapply(1:round,function(r){
print(paste("Round",r))
result <- kmeans(df, i)
stats <- cluster.stats(dist(df), result$cluster)
stats$avg.silwidth
}))
}) --加载图形库
library(Cairo)
png("k-points-pic.png", width=800, height=600)
plot(K, rst, type='l', main='outline & R relation', ylab='outline coefficient') dev.off()
rhive.close()
评估结果:

由上图可见当K=3时,轮廓系数最大。
4、聚类分析
#!/usr/bin/Rscript
library(RHive)
rhive.connect(host ='192.168.107.82')
data <- rhive.query('select h,cnt from tmp.t2_collect limit 6000')
x <- data$h
y <- data$cnt --组合成数据框
df <- data.frame(x, y)
--添加列名
colnames(df) <- c("hour", "cnt") --Kmeans
kc <- kmeans(df, 3); --具体分类情况
--fitted(kc); library(Cairo)
png("k-means-pic.png", width=800, height=600)
plot(df[c("hour", "cnt")], col = kc$cluster, pch = 8);
points(kc$centers[,c("hour", "cnt")], col = 1:3, pch = 8, cex=2); dev.off()
rhive.close()
聚类结果:

至此,一个简单的K-means聚类算法实例完成!
数据分析与挖掘 - R语言:K-means聚类算法的更多相关文章
- 零基础数据分析与挖掘R语言实战课程(R语言)
随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例一)
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 名词解释: 先验概率:由以往的数据分析得到的概率, 叫做先验概率. 后验概率:而在 ...
- 数据分析与挖掘 - R语言:KNN算法
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. KNN算法步骤:需对所有样本点(已知分类+未知分类)进行归一化处理.然后,对未知分 ...
- 数据分析与挖掘 - R语言:多元线性回归
一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 线性回归主要用来做预测模型. 1.准备数据集: X Y 0.10 42.0 0.1 ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例三)
案例三比较简单,不需要自己写公式算法,使用了R自带的naiveBayes函数. 代码如下: > library(e1071)> classifier<-naiveBayes(iris ...
- 数据分析与挖掘 - R语言:贝叶斯分类算法(案例二)
接着案例一,我们再使用另一种方法实例一个案例 直接上代码: #!/usr/bin/Rscript library(plyr) library(reshape2) #1.根据训练集创建朴素贝叶斯分类器 ...
- 【机器学习与R语言】11- Kmeans聚类
目录 1.理解Kmeans聚类 1)基本概念 2)kmeans运作的基本原理 2.Kmeans聚类应用示例 1)收集数据 2)探索和准备数据 3)训练模型 4)评估性能 5)提高模型性能 1.理解Km ...
- 机器学习实战---K均值聚类算法
一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): ...
- 基于R语言的梯度推进算法介绍
通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法.通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Bo ...
随机推荐
- sql查看本机IP地址
CREATE FUNCTION [dbo].[GetCurrentIP] () ) AS BEGIN ); SELECT @IP_Address = client_net_address FROM s ...
- Why is IMAP better than POP?
https://www.fastmail.com/help/technical/imapvspop.html POP is a very simple protocol that only allow ...
- linux route命令详解
考试题一:linux下如何添加路由(百度面试题) 以上是原题,老男孩老师翻译成如下3道题. a.如何用命令行方式给linux机器添加一个默认网关,假设网关地址为10.0.0.254? b. 192.1 ...
- minix中二分查找bsearch的实现
在看minix中bsearch实现的源代码之前,先学习一下C 语言中void类型以及void*类型的使用方法与技巧. void的含义: void的字面意思是“无类型”,void *则为“无类型指针”, ...
- calloc(), malloc(), realloc(), free(),alloca()
内存区域可以分为栈.堆.静态存储区和常量存储区,局部变量,函数形参,临时变量都是在栈上获得内存的,它们获取的方式都是由编译器自动执行的. 利用指针,我们可以像汇编语言一样处理内存地址,C 标准函数库提 ...
- Maven属性(properties)标签的使用
在命令行使用属性时,是-D,比如:mvn -D input=test Properties 属性是了解POM基础知识的最后一个要素.Maven属性是值占位符,如Ant中的属性.它们的值可以通过使用符号 ...
- linux中守护进程启停工具start-stop-daemon
1.功能作用 启动和停止系统守护程序 2.位置 /sbin/start-stop-daemon 3.主要参数 Commands: -S|--start -- <argument> ... ...
- jquery的$.each如何退出循环和退出本次循环
https://api.jquery.com/jQuery.each/ We can break the $.each() loop at a particular iteration by maki ...
- 获取页面所有链接的JS
写了一个实用的JS脚本,获取当前页面所有的JS: var str = " \n"; var list = document.getElementsByTagName("a ...
- LCA最近公共祖先(least common ancestors)
#include"stdio.h" #include"string.h" #include"iostream" #include" ...