Description

A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N . No two places have the same number. The lines are bidirectional and always connect together two places and in each place the lines end in a telephone exchange. There is one telephone exchange in each place. From each place it is 
possible to reach through lines every other place, however it need not be a direct connection, it can go through several exchanges. From time to time the power supply fails at a place and then the exchange does not operate. The officials from TLC realized that in such a case it can happen that besides the fact that the place with the failure is unreachable, this can also cause that some other places cannot connect to each other. In such a case we will say the place (where the failure 
occured) is critical. Now the officials are trying to write a program for finding the number of all such critical places. Help them.

Input

The input file consists of several blocks of lines. Each block describes one network. In the first line of each block there is the number of places N < 100. Each of the next at most N lines contains the number of a place followed by the numbers of some places to which there is a direct line from this place. These at most N lines completely describe the network, i.e., each direct connection of two places in the network is contained at least in one row. All numbers in one line are separated 
by one space. Each block ends with a line containing just 0. The last block has only one line with N = 0;

Output

The output contains for each block except the last in the input file one line containing the number of critical places.

Sample Input

5
5 1 2 3 4
0
6
2 1 3
5 4 6 2
0
0

Sample Output

1
2

思路:

求割点模板题,再输入那里WA了两发orz...,以为最多只能n行就加了个while。

因为是个无向图,所以tarjan(1)就行了,根节点也就只有1了

判断割点的方法:

1.是根节点:如果son>=2就是割点

2.不是根节点:如果low[v]>=dfn[x]那么x就是割点

代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<queue>
#include<cmath>
#include<string>
#include<map>
#include<stack>
#include<set>
#include<vector>
#include<iostream>
#include<algorithm>
#include<sstream>
#define ll long long
const int N=110;
const int INF=1e9;
using namespace std;
int cnt;
int dfn[N],low[N];
vector<int> g[N];
map<int,int> ans; void tarjan(int x){
dfn[x]=low[x]=cnt++;
int son=0;
for(int i=0;i<g[x].size();i++){
int v=g[x][i];
if(!dfn[v]){
son++;
tarjan(v);
low[x]=min(low[x],low[v]);
if(low[v]>=dfn[x] && dfn[x]!=1) ans[x]++;
else if(x==1 && son>1){
ans[x]++;
}
}
else{
low[x]=min(low[x],dfn[v]); }
} }
void init(){
cnt=1;
for(int i=0;i<N;i++) g[i].clear();
ans.clear();
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
}
int main(){
int n,a,b;
string s;
while(~scanf("%d",&n) && n){
init();
getchar();
while(true){
getline(cin,s);
stringstream ss(s);
ss>>a;
if(!a) break;
while(ss>>b && b){
g[a].push_back(b);
g[b].push_back(a);
}
}
tarjan(1);
cout<<ans.size()<<endl;
}
return 0;
}

POJ1144 Network(割点)题解的更多相关文章

  1. POJ1144 Network 题解 点双连通分量(求割点数量)

    题目链接:http://poj.org/problem?id=1144 题目大意:给以一个无向图,求割点数量. 这道题目的输入和我们一般见到的不太一样. 它首先输入 \(N\)(\(\lt 100\) ...

  2. POJ1144:Network(无向连通图求割点)

    题目:http://poj.org/problem?id=1144 求割点.判断一个点是否是割点有两种判断情况: 如果u为割点,当且仅当满足下面的1条 1.如果u为树根,那么u必须有多于1棵子树 2. ...

  3. poj1144 Network【tarjan求割点】

    转载请注明出处,谢谢:http://www.cnblogs.com/KirisameMarisa/p/4319585.html   ---by 墨染之樱花 [题目链接]http://poj.org/p ...

  4. [poj1144]Network(求割点模板)

    解题关键:割点模板题. #include<cstdio> #include<cstring> #include<vector> #include<stack& ...

  5. POJ1144 Network 无向图割点

    题目大意:求以无向图割点. 定义:在一个连通图中,如果把点v去掉,该连通图便分成了几个部分,则v是该连通图的割点. 求法:如果v是割点,如果u不是根节点,则u后接的边中存在割边(u,v),或者v-&g ...

  6. UVA315 Network —— 割点

    题目链接:https://vjudge.net/problem/UVA-315 A Telephone Line Company (TLC) is establishing a new telepho ...

  7. ZOJ1311, POJ1144 Network

    题目描述:TLC电话线路公司正在新建一个电话线路网络.他们将一些地方(这些地方用1到N的整数标明,任何2个地方的标号都不相同)用电话线路连接起来.这些线路是双向的,每条线路连接2个地方,并且每个地方的 ...

  8. poj 1144 Network(割点)

    题目链接: http://poj.org/problem?id=1144 思路分析:该问题要求求出无向联通图中的割点数目,使用Tarjan算法即可求出无向联通图中的所有的割点,算法复杂度为O(|V| ...

  9. [POJ1144]Network

    来源:Central Europe 1996 思路:Tarjan求割点. 一个点$x$为割点当且仅当: 1.$x$为根结点且有两棵不相交的子树. 2.$x$不为根结点且它的子树中没有可以返回到$x$的 ...

随机推荐

  1. Android内存泄漏的本质原因、解决办法、操作实例

    今年最后一个迭代终于结束了,把过程中碰到的不熟悉的东西拉出来学习总结一下   内存泄漏的本质是:[一个(巨大的)短生命周期对象的引用被一个长生命周期(异步生命周期)的对象持有]   这个东西分为两个部 ...

  2. 统计词语频率保存到xls

    import json import jieba.analyse as anl import xlwt # 获取待统计的文本内容 # 打开文件 f = open('zhilian.json', 'r' ...

  3. MySQL找出锁等待

    1.服务器级别的锁等待 可以通过show processlist看到等待锁的线程id,但是无法知道究竟哪个线程持有锁 可以通过mysqladmin debug 相关等待锁的线程以及谁持有锁可以在错误日 ...

  4. jquery.dataTables表格中的内容怎么设置让它不自动换行

    在table中增加 style="white-space: nowrap;" ,这样会撑大td.会出现滚动条. 其他内容配置:每列宽度: "aoColumnDefs&qu ...

  5. (转)Elasticsearch查询规则------match和term

    es种有两种查询模式,一种是像传递URL参数一样去传递查询语句,被称为简单搜索或查询字符串(query string)搜索,比如 GET /megacorp/employee/_search //查询 ...

  6. [LeetCode] 101. Symmetric Tree_ Easy tag: BFS

    Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...

  7. How to enable TLS 1.2 on Windows Server 2008 R2

    Problem How to enable TLS 1.2 on Windows Server 2008 R2? Resolution QuoVadis recommends enabling and ...

  8. JVM、Java编译器和Java解释器

    作用: JVM:JVM有自己完善的硬件架构,如处理器.堆栈(Stack).寄存器等,还具有相应的指令系统(字节码就是一种指令格式).JVM屏蔽了与具体操作系统平台相关的信息,使得Java程序只需要生成 ...

  9. MFC六大核心机制之四:永久保存(串行化)

    永久保存(串行化)是MFC的重要内容,可以用一句简明直白的话来形容其重要性:弄懂它以后,你就越来越像个程序员了! 如果我们的程序不需要永久保存,那几乎可以肯定是一个小玩儿.那怕我们的记事本.画图等小程 ...

  10. Intro to Python for Data Science Learning 5 - Packages

    Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...