Spark中定义的损失函数及梯度,在看源代码之前,先回想一下机器学习中定义了哪些损失函数,毕竟梯度求解是为优化求解损失函数服务的。

监督学习问题是在如果空间F中选取模型f作为决策函数。对于给定的输入X,由f(X)给出对应的输出Y,这个输出的预測值f(X)与真实值Y可能一致也可能不一致,用一个损失函数(lossfunction)或代价函数(cost function)来度量预測错误的程度。损失函数是f(X)和Y的非负实值函数,记作L(Y, f(X)).

统计学习中经常使用的损失函数有下面几种:

(1) 0-1损失函数(0-1 loss function):

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAASoAAABACAYAAACtIjqnAAAV2ElEQVR4Ae2dedRN1RvHtyFT5plIKEVUxoxZlAwVKhkyJauICqFVhlWtpIQkCiVi9YcpZJYxCcmsECXLnFnm8fzW51k993dd9973vdN5r/vuvda955w9PPt5nn32c/be5/nuk8ZxHMfYYDVgNWA1EMcaSBvHvFnWrAasBqwGRAPWUNkbwWrAaiDuNWANVdw3kWXQasBqwBoqew9ETQPXr18XWv/8849p1KiRKVmyZNRoW0KpWwPWUKXu9o+a9BiptGnTml9++cVUqFDBHDp0yMyePTtq9C2h1K2BNPatX+q+AaIhPS+O06RJY7Zv326qVKliChUqZDZt2mSyZMkSDfKWhtWAsSMqexNERQNXrlwxbdu2NWfPnjWTJk0SI3X16tWo0LZErAasobL3QEQauHbtmoym5s+fb9avXy9rU0z9mAqmT58+ItqJVFjX7yZMmGCmTZsWVdGU9syZM03Xrl2jQpt2ff75580333wj9LSOqBAPg4g1VGEozRa5WQN0EtaonnrqKUm8FfyI586da+68806TI0cOkzt3bpM3b17zxBNPCP90VMLEiRNN4cKFTaZMmUy2bNlMx44dJT7UP6bGly5dMhiqBx54IKTiqsuff/5ZptZlypQxvXr1EhqkofedO3eawYMHmz59+nhoq3H58ccfTfHixUXG7Nmzm3z58pnHHnvMXL582Zw+fdqUK1fOZMyYUR44+fPnN507dzbp0qUzH3/8sXnvvffM8uXLpQ7lw1OBmyesUdlgNRCpBqpWreqkSZPG+f7774XUtWvXgpI8d+6cs3//fmfFihXO008/7bRr107yX716NWi5aCaeP3/eOXz4sNO0aVPQGU7Xrl0d+FIeOF6/ft2pUqWK8+yzzzpr1651Tp8+HTILqosxY8Y4Xbp0CUvOS5cuOXfffbfTpk0bp2DBgk7+/PmFDvwR6tat60yYMEHOff8uXLjgnDx50hk5cqTIWbt2befixYvOlStXJCvlMmfO7IwdO9bZs2ePc/bsWUd5njZtmpMnTx6RW+vype/GtXGjEltH4mugcuXK0gnmz58vwmpnDyT5l19+6ZQrV8559NFHpVz79u2TVS4QvXDitePNnTtXeHjooYc8ZLQTDxkyxGnSpIknPpwT6sHQ1KlTx/nzzz+FhNadFD01GKtXrxYeZ8yY4bz++uvOzJkzPcZk+fLlzl133SUGNhhdjDAGLkOGDM4ff/whVW/fvl0MIDR8g9Z97733On369PFNdvXaGipX1Z24lamhmjdvngiZlKHiKX/mzBnn4MGDTrp06VJkRAWjdGxGSQUKFBBDsG7dOokjDaOLMWWEQT7tuIFakXTk9v5dvnxZsn/11VdOx44d5Zy4pGj51jF06FAnbdq0N4zoVMfNmjXz0NY43/Ia36NHD5Fz4MCBzrFjx5wiRYo4U6dO9fDlbei0zKeffurky5dPjK0vXbeu7RqVm/NsW5dHA6z5ZM2aVdZJdEHek+jiCesurNuwNsU6EmttHFnzefXVV83kyZPN7bffLhyxFhQskM7ajvfvtttukyIzZswwH374oZwTlxQtrefYsWNm3759hvUp9HXkyBG5RmfUw7rXihUrTL169aQIvPsLGt++fXupe9y4caZOnTqmX79+plmzZoY3tPCl+aChPOK8e/ToUbNy5Up/pF2Js69lXFFz4leiC7fJlRQDoZ2CY0ot1Gq9TZs2NXTeefPmmZ49e5qWLVuaoUOHmtKlSxs1CsFkwz1j+vTp4p6hcqETDPLvv/9u/vrrL7No0SJz4cIFIcPCfPPmzQOSVP1g4BYvXmwWLFhgcuXKZd59911TtGhRM3DgQCl78OBBgzHTBXqt25cwRgea5GvQoIHIyYJ8p06dxEj5e0OrtIoUKSJ1w0PdunV9SbtybQ2VK2pO/ErUUOnNrcfkSK7GIjl5o52HUQmhdu3aJk+ePGbHjh2matWq8navSZMmATuxLx+MSHbv3m3OnTsnBlhlwsiNGTPGdOnSxWzbts2TxugoWFD9vfTSS2I04a1Nmzbmo48+uqEYIz9GQhixpAK8YJAyZMggWf/991856sjJX3nkyJw5sxjHLVu2+MviSpw1VK6oOfEr0Y6lHVSPt4LkGFmmf40bNzbjx4831atXN71795aRlL+Rhj+Z6Mxvv/32TUlLliwxYB8HDBhwU1pSEegQve7atcswYsONgDg1OJQHqoRrQc6cOYWctoMvbQwpsiAX00fQA7heMELjXOvyLafxjAxPnjzpm+zadfBJt2ts2IpudQ1wQxO0o+jxVpILY0B45513AnbcUOUZMmSIrAOFWo78OkrduHGjFC9fvrzoV0eBRF68eFHWknSU5K8eNWz4RS1dulTWtFh3ouyUKVOkiNblW17bEfpnzpzxTXbt2o6oXFN16qgoWIeJVw3QGRlxsCiNcycjDOK0kyaHb9aeGJ2cOnXKY0xwply1apVM13CuVHoYDpwuWQNLTgBDyaiJtSKC0uEcowU9jCx5NPDgwPjwY2qIoyle5mvWrJEyrVu3Nl9//bWMIHlpQNDRk9LwjkM/KYndtIbKu1XsecQa0E6kx0AENV2nVrpO4j1aCFQ2mvHaOffv32/27t0r60AYWzq48pSc+pCjfv368haT/MjXo0cPM3r0aPEI1ziO1OltVALR1/oxLniWMz31DRg83vyx3sS5ykP96JLfwoULzbBhw2RRHhrk4Y0fU9zVq1ebdevWmYcfftiXtFxrO7H2VrBgQb953Ii0hsoNLaeiOugEBO0wgUTnCc0oQNc9mIboGzHWezTgHkCHBxqiT35Ni8YRPuGFN1qEypUrywglVNqMWrzfiGEA2EmiVatWoZLy5MdIMFpijUpp+xpQ3kqiR0ZyGCoNvGXEAG3YsEGgMN27d5d06EGXN5HAhpAf3eKmUKJECVOsWDElIUfy0jYHDhwQ2M0NiS5e2DUqF5Vtq/q/BmbNmmUefPBB07BhQ4nUa/UH0pxbt26VBeNPPvlEo6J6pN4aNWqY999/X1wJhg8fblq0aOEZGYVSGUYEo0fnx33g5ZdflpEZcaT5/oLRxqCQn4V4Fr8Z/RCg7R0wLBic3377TaIpQ2ARf8SIEeann34SdwTeZvJWkhEWxmfs2LHm/PnzAiInbtCgQWbt2rU30NC6GG2eOHHC01aSye0/tzxLw6lHvXeBDShGKhw6sSoTC/7wBm7VqpUzfvx4YVvr4CJYWqxkTC7d8uXLi8fz0qVLb+I7uTT85QOPN3nyZKdChQr+kuMqTr260UHz5s2FN+/2C4fZhQsXil43btwoxbUOLpR2gwYNBKdInHqTh1OXbxml9fnnnzu5c+d2QBOkVMBCuxJUqQhduHBhJ2vWrNIAefPmde644w7nzTffFD40nzYImKTq1asLgJUMc+bMcYoWLepkz57dyZUrlwAmGzVqJGVVsYAsCxUq5GTMmFHqefHFF8OSUXlYuXKlA0SkdOnSTs+ePYWWpvnyR6LKoBgs+MyWLZuDrGDbwH2dOnXKKVu2rOCueFACUejUqZPQ3rdvn2C3li1bdkNdXARLk8wp9IehApSshkr1Ewk7SuPIkSNOw4YNIyHlSlnlFwAz9wxB74VQGQBbx2/QoEFynysUx5uO3u/g/kqWLCkwH+XBO1+458o7bav3fbi0Ii3nmqFSRumkx48fFyBkpkyZnF27dkmnJd47qMJ9UeFuId6VF/iKF9S63jjxgmhXHXGsWLGiGKrFixdLtPLqnSfUc6WBAR8+fHioxV3Nr7yCdYx0NMVOBzy82LUBvQ4YMEBk0Tq8BaOf8MOYfPfdd95JEZ1rXYsWLRJDeeLECQ8GMiLCYRZ21VCp8Tl06JAALGvWrOmXbVWSjkh4cmhZPcYa8a48xBtqXfmKB0S7Nh7tU6ZMGelcmzZtkmhtJ80T7nHDhg2yxYq/EUW4NGNRTttl1KhRzqpVq6SKcHXAzg1se1OsWDHnhRdekBF4IFoav2bNGoetdsLZhiaQPgAtlypVypk9e7ZkURkD5Y9lvKuGSoeq7FnEE6N///5igHRLDRVU8wVChdM40UK8a52BjvGGWlfdxAOiXTvJ3r17ZZrNDgRsJWKDuxpQAzJ69GjPWlWkHHCftW7d2hk2bJiQ0joipRtu+RQxVMx3MVTBpgls7MXeOZMmTbpJUao01p5YF+nXr5/kYb2Iufq2bdvkWjtSOMo5evSoQwd85plnZD2MKSrXaiiC8eddn/LKSINtOphGsnUINxXB10gTp3zv3LlT9LRkyRIPyWBpnkwunaguWPinPd944w2pWWV2iQ1bTSrQgKuGSvXJGxwWupn3+ga9yXfv3i0d25/R0Q4ya9Ys6SDQY17PPJ2FRYLm8aWf1LUaAjZ2Y60hS5YsstjP0+Wtt97yGJFg/PnWAU1+LPrToXv16iVZ/Bkp77Ksx7EQ37t3b+9oOQ+WdlPmGEQgD22Fnu+55x4nZ86cslsmVakOY1CtJZlKNeC6wyc+IZs3bxaEOohvfDXw69Cg3rjBUOH4fRAiRbxrnd5H5SWeUevoLKUR7eiJH9uE4JDI/uMFChQQ3x9tQ2+92nOrgUg04JqhwhGNG5gvleDM9sgjjwjfxKvh4ZwPWFarVi1JVDh5I0W8B1KcGs94Ra0rf8lBtOPUh2f38ePHRf+U9RcwOuiU7Uf0yyP+8hEHDbyVwbZNnTrV4DQJyJXy1kgF0pqNj0QDrhkq7SB8EYPAaIigHYTjr7/+avr27SsIbzoCN31SINdYIN7pcBjPaKPW8fxlBAIYFNR6t27dpHOroRaF/PeHPgjIj5HxDsHSvPNxDpCU/ZCiFXjIwC+ffAKNz4dG8TCnHYCR2GA1EAsNuAahwehgrNitkBudm5tAHBADOh9PcrZFJZCHTqGGSCK9/shPOV/EezSf6MlFrXuxJfIo38igqPVly5aJTKDWCex7RD6CGnG5+O9P45DRF7UeLM2bRizOkYn62VSOb8gBeWFXTIwUBt4Gq4FYaMC1ERWGBQAq61MVK1b0ILG58fmBEGedQ7dYDYQKRwl0FOhFingPpFA1dvGKWkd2QnIQ7bGY+lE/0+6RI0cKap/9xkHoP/744562CaRbG281EJYG3HiJgG8N308bMWKEvPXq0KGDXB84cMDZunWreB0DMdFvu8HTjh07xPWAV/QE7zdJvG3CARDnOuwWXsu8fUrqTR+uDkBr4COpAC3cI1q2bClZ9W2klgvEH59Doh4gQfDWvXt34RV60EDeJ598UtLwugdywrfU/AWwVWCs+HKIbwiW5ps3Ftf61g/P/eLFiwufOPISvNsqFnVbmjdqQO/NaGJiuV8DYU5vrN2dK56AMQ+49uNJzad5+HgiN/Z9990n2Dm8b3EBAAen2DYYoiPy4cPp06cLf95GiAYBewdmEBhOiRIlxHuZV/bBQt++fcVAUH+goAYFI4qh+eyzzySrd/1EBOKPj0zWqFHDqVatmgNYlB9GjUAH7tatm3wsEleFevXqOfXr13emTJki6XrDaUfHdwsefvjhB0lXGhz9pXkyuXSiOsGVAz4VD6ZyJMUGLiWvvfaa06JFC2k/hYCo/EmVjzTdTdxoJLyqPuIJcxqJPOGUdcVQhcqY3ujRRoVjyJKLxI9X1Loah3hAtGsH+vvvvwVczUOIb+AlFSgH3pOHFUaKj2CCkeNh9cEHHyRVPGrp3A9ufCk5GgzHE+Y0GvKESiMuDZV2xmiiwrVTJYXEj3fUuhrxeEC0681GeynWb/PmzRKt+tY8vke27WEHDe8wbtw4GZlhuNwIymOscaORyKLtHW+Y00hkCqdsXBoqBOEm4hctVLg2eDAkfryj1lWGeEG0e99wunuCwn2UV+88es76Ih73tWrVkiiuyY+RAxLlzxNfy0b7yD3mFm40Et7jDXMaiSzhlI1rQ4VA0USFJ4XEvxVQ6/GEaPe+4XigJHc/KjaBY02LlwoEHUGDpYQGa3duBTWoscSNRiJLvGJOI5EpnLJxa6gQRm+iaKLCw1FSoDKx4I9OGwi1HiwtEI9uxWOoMD66cZ7qxl/9CxYsEIP03HPPSbJiHg8ePCg0mEa6FdRIxgI3GokMOi2Nd8xpJDKGUtY1P6pwfCfUnwlv7ngMseAPn7Jvv/3WI67WQUSwNE+BFD5RZ9RgbODE6i9oWVAJbgV0SogFbjQSGdRXLp4xp5HIF2rZuDZUoQpj898aGtBOqEflWq/VeGh8rI941EeKG42FY606Nscr5jTW7eJN3xoqb23Y84g1oMZGj/4IAnwm8FFOgubVjpknTx6Jd/tP4VrhfCk52phKZI93zKmb7eMa1s9NoWxdKacBnb7p0R8nfIuOUROfCCef5tWvDJcqVcpfsZjFYShjjRuNhPl4xZxGIlOoZe2IKlSN2fx+NaCjIh0l+c30XyQ4zpo1a8o+VpTTdTg+mskoIpKPdgar118aRhIeIsWNxmLqp3qJV8ypP33GLC6UlXeb12ogkAb0rR8e5gR9mxYo//r162UH1y+++EKysNsrWzQDKfIOoeAzvcsl95y3k+HgRpNLP9J86DGeMaeRypfc8nbqF7NHQOoirCMq36M/LTCKqVChgpkzZ47swFC/fn35XHjZsmVlIz7vMrfSl5K9+Y70nC2AGF3aLyX/p8nkWjSbz2ogmAYqVaokPlDJHVEFo+WdFgo+07tcopzHK+bUbf3aNapIH322vGhAR1LRVAcjL/aGr1OnTpLbI0ez3nigxU63hBw5chi+LXD//ffLtbee9SVE586dTc+ePeWlhK5rRUMGrWvs2LGmQ4cOhq2vUyrYqV9Kad7Wm6QGtCP279/fNGjQIMn8iZKBt59sIMluuGxZjRHyt4Mqb07RUePGjcUPbMaMGR5Xj0h1wbQTowcPe/bskS3CtT0ipR1OeWuowtGaLRNQA/oUDpghhAQ6CvvWHzt2zLzyyishlLy1s+Jn1q5dO1mfKleunOndu3fQ0RI6HzVqlBk8eLDsuBoN6dE9e/Wz3fTEiRNlVJeShioNc81oCGZppG4NVK1a1fDxipkzZ8oTXp/IqVsr7kivuuYjHrx8YIvoSAOL+e3btzeVKlUy3bt3l4X9aE4rQ+XPrlGFqjGb/wYNcEMzBSlTpox8RejAgQOSbp9/N6gpphdqQKKJiaVNA2FOYypMAOJ26hdAMTY6NA3wVRqe7LgcEKI5BQyNE5s7ETVgp36J2Kouy8ToCY/0KlWqmC1btshHZvGTApaSPr0dtLvcHAlZnTVUCdms7gqFoWIExcJ39erVTYkSJcy6devEtcBdTmxtiaoBO/VL1JZ1US6MFNO+8uXLmwULFpjDhw+bWrVqmR07drjIha0qkTVgR1SJ3Louy6Zvn/C7adu2rfjf7Nu3z2UubHWJqAFrqBKxVa1MVgMJpgE79UuwBrXiWA0kogasoUrEVrUyWQ0kmAasoUqwBrXiWA0kogasoUrEVrUyWQ0kmAb+Byny0UmOYVQJAAAAAElFTkSuQmCC" alt="" />

(2) 平方损失函数(quadraticloss function)

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAQIAAAApCAYAAADeUycRAAAMFklEQVR4Ae1beWxNzxef1toqUbsivkWstZSgLbEL9Ye1aWwR0UglmtJYIkWQSIPYlwQhVERqXxtbVYnE3iLWCpGqlFKtrZZifvmcfM9z+373Xe3tm3q+nUnem7kzZ86czzlnzl1mxktKKYVOWgNaAxVaA94VGr0GrzWgNUAa0IFAO4LWgNaA0IFAO4HWgNaADgTaB7QGtAaEDgTaCbQGtAZ0INA+oDWgNSB0INBOoDXgcRrYvHmzGDdunAgKChKRkZHi06dPymWsrHwEPYDWgNZAiTVw+vRpkZSUJFJSUkR+fr5o3bq1iI2NFdu3by8xDzuEetXAjtZ0H60BRRp49eqVuHDhgrh7966oX7++GDFihNizZ4+i0X6x1U8Ev3ShS1oDf1wDY8aMEa1atRLt27cnWV68eCFatGihXC79RKBcxXoArYFfGvjx44cYP3682LlzJ1X+/PnzV6MQokaNGiIsLExUrVpV3LlzR1y8eFFs2rSpGI2KC48KBKyUI0eOiOnTp6vAWyaeKuSzcgyrtjIBsdFZBXYbYri1iwpMv7NZpUqVxIoVK8SSJUtEWlqa8Pb2FsbjPiiDR15enpg8ebLYvXu36Nevn1txmzLDoSMV6cePH8R206ZNMiAgQPr5+eFwk6xXr55s0qSJnDt3LrUz3c+fP+n60aNHMiwsTGZnZ9P1iRMnZLNmzWStWrWkv7+/rFu3rhw2bBi1ff/+nfLExETZuHFjWa1aNRpnypQpVF/aP5bh0qVLsnv37rJdu3Zy1qxZxIbbnOVDI2NIS0uT//zzD8lZs2ZNwjpw4ED59etXWVBQIIOCgmTVqlVJD/Xr15fR0dHE+/nz59Tv/PnzxcbChVUbEZfDnyvs5WkbOzBZbk+yJ/vKgQMHyJffvXsnWU5gRBk0sbGxEnIj7du3zw78UvVBNFKaMAny8vJkq1atZPXq1eXjx49pUqDemFgZAwYMkJjYnAoLC+XLly/lyJEjaQJNnz5dfvr0SXIQQI6+PXr0kGPGjJHXrl2TUK7dBLkg68SJE2WjRo1kgwYNiJUr+YzjfP78Webn58uNGzeSrH379pVfvnyRRUVFRAZcPj4+ctu2bfLZs2fy48ePjiBi5hi/cxrj2CrLrrCXt23sYPQke7L8bNc2bdrI+Ph4rqYcuo6JiZHTpk2TqampcsuWLTIiIqIYjYoLpYGAHSgnJ0d6e3vL3r17m2JgxfAdlSc3iJlHcnIyTa4uXbo4ePAEW7lypRwxYoSj3k6BZbh8+TKNc/jwYYrKR44ccUxWM/nMxkKgQgDB3R9PEEgPHjygAAMezonHNnMMqzZnPiqueXwz7OVlGzu4WG5Psyew8E1s7dq1Ek+GxpvioUOHyP/w9My/yZMn21FBqfooDQQM+OjRowRq4cKFNLF5ArOkTIfIFxUVRdVchws4HO7yDRs2JD43btxwBIiTJ0/Kjh070t0VdOwAzLu0+apVqyhoGZ8qWBZX8hnHYNq4uDiSNSEhQb5580Y2bdpU7t+/n0i/ffvmkB8V3MfMMazajOOqKvP4rrCXp23sYPQ0ewIDB9DMzEzykXPnztmB5tY+5RII8J6N6JaSkkLCm01WPELjLpqUlPR/NEyPd38vLy+5YMECosHdtmXLlvL+/ft0zQqmi1L+vX79WmZlZcnRo0fT9wi8wuCaJ4KVfMahWNZbt25RQMFrBgLV5s2bicw5CKKS5TZzDKs247gqy1bYGa9K29jB5qn2NGLBqxW+e82ZM8dY/UfKSgMBI+ratSt9yHv79i1XOXJ2pKdPn9LEMZvUPBmPHTtGAQX88C4eHBws8eiOxDQOxiUs8ETbunWrjIyMlL6+vvQxc8KECXLevHmOSWoln/NQ4IkfPmoiAM6ePZtIzIKAsa+VY1i1GXmoKFthZ72rsI0dLH+LPVnOTp06ySFDhtiB6tY+yjcU5ebmitu3b4uQkBDh7++PwCO8vLwcKxhYPkHKzMwUVapUIRpH478FLLkg9e3bV9StW1c8fPiQ+EVFRdHOq+/fv4vKle1BYVmmTp0qxo4dS/wnTpwoli1bVkwMK/mKEQpByz+QB2vBSO/fv6ecsTrT4xp68fHxEc2aNaP1YyONVZuRTlXZCrtK29jB8zfYE7h4HlSvXp22EtvB6s4+9mZPCSTAGi0c/+bNmzQx+vTpQ71Qz86D8tWrV0VoaKjIyckR1apVE7Vr1yY6NigPBdpatWqJ4cOHix07dtCmizlz5jgmHdPZydkojx8/FkVFRaJjx45kKKzncoD5nXw8LgclyIYg2LhxY7Fr1y6xePFiKvNYTM8515s5hlUb9+e8sLBQxMXF0Tq08xo10yCHfqFTPz8/x+YWY7ux/DvsKm1jlKOkZdaXp9oTONi/cbPAnoE/nZQFAhgDCfumkXA3R2IHRH79+nUxf/58kZqaKr58+UKBg++iRGzyh4mKtGjRIkdUNSErVRUcGcEpIyOD+gUHB5OcHLBQWRL5OHBgwwgwXbt2TURHR9OBkX379okZM2bQ5DPyZUGtHMOqjftz7uvrK7Zs2cKXbslLgh0DlcU22DizevVqCrzQo1lCYEOg7d27t9iwYYMZCdV5uj0hJAcr4IHN/nRSFgj4boRTVHD8zp07E1YoAIbGhMc2y4iICKoHDerhTHgycE6YDFAatlwGBATQ3RV1PEmc6e1cP3jwgMZu2rQpdTfydiUf8MDx8MOrTWJiIuG6cuUK4Z4wYQIFAjzFxMTEEF92AqOMXGfmGFZtRh6qyq6w83jusA1ex/BzZ/JUewIj+xaOGDdq1MidsG3xUhYIABTHKPF9oFu3bg6wcCr8MFGSk5NFQkICCY6TVl+/fqX3aZTZ+dHI5ezsbJGVlUUOg0CCyYeAU9bEPCBTYGAgvYI483QlH3AyJhwhXbNmDR0hxWsM5O7fvz+9xly+fFncuHFD9OzZ05k1XVs5hlWbMzMVrwausGNs1bZxxleSa0+3JzDApnjSwqGiQYMGlQSWUholgQDO+OHDB7F//366i3fo0EHgeCXu+G/fvqXH5gULFohRo0Y5Pg62a9eOngYKCgro+KURNZwNd8pTp05Rdffu3YmXkcasvHfvXnpfjo+Pd9yNzehgFMiGd8oBAwYQiXOQcSXfkydPaIKnp6fTHvKZM2eS/OAHvvfu3RN16tShCQM5gBunyZo3b15MFCvHsGorxkQIesx096uBK+wY265tnOV257Wn29MYPDEfwsPD3QnfHi+3rkH8y+zgwYMSu+SwiQbbdAMDA2Xbtm1p737z5s1piQ5nDnhvPbphey7OEWBnFRIvS6GMXX7Y+48zC9im3KJFC9pOjCU1qzR//nxavsP4rhLGwRLmixcviHb9+vVEahwfFa7kwxbQXr16ydDQUDl06FD6PXz4kHhgiWjGjBkS26axlDh48GBaKuK947x0yktJ2LuAuXXmzBmHuFZtDiLFBVfYMaxd26gS2dPtCdzsWziHU6dOHfItVfooKV9E9D+eeEJgIuEsARIrqyzCIVDs3btXYt/B79Lp06dpEmZkZBApT0BcqJKPZWKsZo5h1cb9VeaqsauS3VPtCbysU+yD4UNtqvRQUr4eEQjY2bE5CDsFMQmNE7GkYIx03D83N1eGh4cbm4qVcegDv+XLl9MuL2z/dU4q5DOOYeUYVm1GHqrKqrG7W+6/xZ5nz54lf8MmO/ZVd+uiNPw8IhBAYJ78iJJ4tShr4gmEo77r1q0zZYfdiXgUx8nFbt26yaVLlxId9zV2crd8zJvHMnMMqzbuXx65Kuzult3T7cl4cfakdevW8vjx41TFdub2P5F7VCCAAq5cuSJDQkLKdJSYFZmenk7fEszu8qDBlt9JkyZJfLfACS+cAnMVnbnenfKxnFaOYdXG/VXnKrG7U/a/wZ54wsL29TVr1hB0TwgCEMRjAgGEYaXggA5/K3Cno5SVlwr5rBzDqq2sWErbXwX20srgbnoVmDzJZqXRlxeI7a036F5aA1oD/xUNlH03zn9FExqH1kAF1oAOBBXY+Bq61gBrQAcC1oTOtQYqsAZ0IKjAxtfQtQZYAzoQsCZ0rjVQgTWgA0EFNr6GrjXAGtCBgDWhc62BCqwBHQgqsPE1dK0B1oAOBKwJnWsNVGAN/A/mH+C3cwZxagAAAABJRU5ErkJggg==" alt="" />

(3) 绝对损失函数(absolute lossfunction)

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAP4AAAAmCAYAAADk+yYTAAALVklEQVR4Ae1caWxNTxSfFlVStZaqNrQEDQ0lKBqNIsQHtZSINmKJVELQUBElfBARQa2JCqHig1prC6XWSFq1S2hpiFhip5baWuaf34lz/7e37/Utffe917yZ5PXOzDlz1jmz3JlbPymlFCopCygL+JQF/H1KW6WssoCyAFlABb7qCMoCPmgBFfg+6HSlsrKACnzVB5QFfNACKvB90OlKZWUBFfiqDygL+KAFVOD7oNOVysoCKvBVH1AW8EELqMD3QacrlZUFVOCrPqAs4IMWUIHvg05XKisLeHXg//37lzyUl5cn5syZ41XeMkO2P3/+iClTpog9e/aQrsyDFbcFZzwzn79//xYTJ040k4XbabOdXdnP7PGVR22Jj3TMTn/+/CEW27Ztk2FhYTIoKAgfBsk2bdrIDh06yMWLFxOc8VD4+/cv1T18+FAOGjRIvnjxgsonT56UERERMjg4WLZs2VK2bt1ajh49mmBVVVX0zMnJke3bt5eNGzcmXjNmzKB6R/4w/6tXr8p+/frJ6OhouXDhQiLBMKNsALIOly5dkp06dSIZmzVrRroOGzZM/vr1S5aXl8uePXvKgIAAskNISIhMS0sj2s+fP6d2Fy9erMaLClJKW3DGM+v548cP2bdvX428u/yhMXQiw/7yNl8abemEak43EU63dKIhOv2HDx9kly5dZGBgoCwrK6MgQL0xsbMSExMlApnT9+/f5evXr+XYsWMpaObMmSMrKiokBz2eaNu/f385YcIEWVxcLD9//szNHXpCLsiampoqQ0NDZdu2bam9Ndn0xOHUT58+ya1bt5KcCQkJ8ufPn7KyspLQoFOTJk3kzp075dOnT+W3b9+0QePQoUM0oEFu5oVGPKhYg+v5m5WHDgMHDtTIu9MfGlMnMt7mS6hgtKUTajndxG2Bzx341atX0t/fX8bHx1sVmjs4z5oczGjAdE6dOkUB1bt3b40OB9W6detkUlKSVu9ohvkXFhYSj6NHj8p58+bJvLw8LfgsyWaJDwYlDBiY3bFCQCopKaEBBTSMiXl369ZNLl261AjW+FuD12jg4goMaAMGDNCousMfGjMnMmxPb/Sl0ZZOqOd0E7cFPs/Ix44do2Bavnw5BTEHq14Dxk1OTpYzZ84kENehgM6G2bBdu3ZE68aNG9qAcPr0aRkTE0MzKPDY8Xr69ubXr19Pg5R+xcByWJNNT5tx09PTSc7Vq1fL9+/fy/DwcHnw4EFC/f37tyY7KrjNxo0bJbYAxtWQLbievxl5DGR9+vSpRtpd/qjG1MGCN/rSki0dVMtpdLcHPvbJ2N8XFBSQ0NYCE8sgzJT79++vgcdtsHf38/OTy5YtIxzMqJ07d5YPHjygMs9GVHDgz7t37+SzZ8/k+PHj6V0CtiQoc9DVJpueDct5584dGkCwbcCgtH37dkKzNOixzI8ePSI7nT9/Xk9SGySswashm1DAliQ2NrYaZdbTLH9UY+ZgwZt9acmWDqrnNLrbAp8lxGyBl24fP37kKu3JHQgVT548oWCxFMQcgMePH6fgAE3sp9EhsRxHYhyNuB0ZDrodO3bISZMmyaZNm9LLx5SUFLlkyRIt6GqTzcgGNPHDC0gMeIsWLSIUS0Gvb4u9M15eZmRk6Ku1vC24hujijKVZim3tan/URfT64EtLtqyLzo60bejOs5O3b9+Ku3fviri4ONGyZUsMOsLPz08Twd///9PFR48eiUaNGhGehvAv06BBA8olJCSI1q1bi9LSUqI5c+ZMkZSUJKqqqkTDho6rxrLMmjVLTJ48mWinpqaKNWvWVBOhNtmqIQohcKwDWQICAgj05csXeup1NbaBXZo0aSIiIiLEvXv3jGCyW23wGg1cWAHZjP+tzSx/1EXs+uBLS7asi86OtHU8Ohyh/g8X56To6Ddv3qRAGDJkCEFQz50G+WvXromBAwcS7NWrV6Jx48aiRYsWVGZH/iMpgB8cHCzGjBkjdu/eLQYNGiQyMjK0QGM8R59wBniVlZWJyspKERMTQx2dAxj0bMnGPHkAglwY9Nq3by/27t0rVq5cSXnmxfj85PrAwEDx6dMnrtaetuAaohDi+/fvIj09XXz48IF8gLaWEnSGTYOCgrR7BJbwrNWZ5Q9r/OypZzt5sy/t0cMMHLcEPne2y5cvkw6YqZG4s+F5/fp1kZmZKS5cuECwnz9/UkflmZIqLfxBcCKtWLGixgrCArrNKnRgDEa3b98m3NjYWJKTByhU2iMbDxRr164lnYqLi0VaWprYtWuXOHDggJg/fz4Fmp4uCwd7IEF3BKwx2YLr8Zs2bSqys7P1Vabm6+KPffv2iQ0bNtAKCfazlDCBYECNj48XW7ZssYSi1dUHX2rCujnjlsCHsxD8BQUFFFS9evUiNVEHB6OD47ZacnKypj4CAjB0JMz8xoTOjw5w5coVERYWRjMo6jgojPiOlktKSohveHg4NdXTtSYb9EFnww/blJycHNKrqKiI9E5JSaHAxwpl7ty5RBdt9LRRyXXQD4FrTLbgRnx3lKFDXf2BbRV+rk7e7EtX62ovPbcEPjoFlqzY3/ft21eEhoaSfAgg/BAYp06dEqtXr9bkDgkJEb9+/RLYEyPPnR0InH/x4oV49uwZdRYMHgi42vbOGvFaMtweMkVGRtJ2wohuTTboyTrl5+eLrKwsGuywJYHMQ4cOpS1JYWGhuHHjhhgwYICRNJV5IKioqNBspUe0BdfjumOpb6Y/9Lo4mq8PvnRUJ1fhmx746Hhfv34VBw8epBmhR48e4s2bNzSbf/z4kZbBy5YtE+PGjav2Ii86Oppm+/Lycgp8vcLoaJhdzpw5Q9X9+vUjenocS/nc3Fza7y5dulSbcY14CCqsNLAvTExMJLBxQLEm2+PHjymgb926JbDEX7BgAckOeqB7//590apVKxoEIAP0joqKEh07dqwmBnCxnXj58qUYPnx4NRgKtuD6Bu5Y6jvrD72cZuTrgy/N0Nsumo4cATiDe/jwYYlbZri0gmuvkZGRsnv37nT3vWPHjnRkhjv7fDedeeBWE+7hHzlyhKr4yAgF3KTD/Xnc+8fV36ioKLqeiyOu2lJmZiYdqUEGSwk8cKT48uVLwtu8eTOh6Xmjwpps2dnZcvDgwXSlddSoURK/0tJSooHjpfnz50tcQcbR3ogRI+TIkSPlgQMHCM5HmXwMhbsDWNycPXuW4PzHFpzxzHpaOnt21h9myQi69cGXlmxppk30tDH7eF3iIEDg4C4+kjH4nBEaA0Nubm6Nm2dGWvn5+RR0t2/fJhAHGwpmycYysJ74oKlVq1Y0yDAMT1twPa4ZeU92Vmf08WZfetKWpi/17Vp2GJCwdESaPXu2WLhwIS2Neb9mQLW7CJo4+8Y+mz97NTbGqQJS8+bNaduBbQkSloyczJCNaet57dy5U0yfPl3gSE+fWBZrcD2uL+frgy896h9nRlF3tMEsix9u42G7UNfEMzU+f920aVMNcrj5h6U1vurDZ6erVq0iHG6nb+Bq2Zg28zp37hzd2sPtRkurDWtwpmPm05O3zezVqz74Erp40pZeudSHUbjDFxUVybi4OKc/rdV3llu3btG7AHwYY0y4Qjt16lSJ9w7Tpk2jj2NYBiMu17tSNuaBj3i6du0qT5w4QVU8GNgLZzyznlie6r+INItPXejWF1960pZeG/hwPHd6fNTCe/26dAhXtjVDNuzf8V1AVlYWico8WG5bcMYz84n3JLV9Um0mb7Nos51d2c/s8ZUnbekHY3p0r6GYKwsoC7jdAv9/FeN21oqhsoCygKcsoALfU5ZXfJUFPGgBFfgeNL5irSzgKQuowPeU5RVfZQEPWkAFvgeNr1grC3jKAirwPWV5xVdZwIMW+A9O7UCn6JFuHQAAAABJRU5ErkJggg==" alt="" />

(4) 对数损失函数(logarithmicloss function) 或对数似然损失函数(log-likelihood loss function)

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAASYAAAAmCAYAAABpszZuAAANQ0lEQVR4Ae1ceWxNzxefVltUSWurUmqLfS8tVVpKrLEEsSZiiZJKaCgpFSQi0YhdYg0tf9i1qH1fa18SFCH2rYqi1Dq/fE6+5+b2ee3zVvfnzSSv996ZMzOf+cyZc88stx5SSilUUAwoBhQDBmLA00BYFBTFgGJAMUAMKMOkFEExoBgwHAPKMBmuSxQgxYBiQBkmpQOKAcWA4RhQhslwXaIAKQYUA8owKR1QDCgGDMeAMkyG6xIFSDGgGFCGSemAYkAxYDgGlGEyXJcoQIoBxcBfMUy/fv0i5tPS0kRcXJyhe8HRWL99+yYGDBjgsDb//PlTDBkyRKxfv57KZLxcgaV0llNX6xlgrh2lx67WDetb7MIc+CTF1vDz50/Kunz5clm5cmXp5+eHz1tk+fLlZZUqVeSUKVMoneXw8OvXL4q7c+eOjIiIkE+fPqXnPXv2yKpVq8oyZcrIgIAAWa5cOdm9e3dK+/HjB11TUlJkUFCQLF68ONU1cuRIirf0h+vfsWOHbN68uWzUqJGsWbOmbNCggQwNDZUtW7ak+7CwMLl7926tOGdg/fLlC9WpVSKlZHzHjx+X1atXp/aXLl2aeIyJiZFfv36V79+/J9w+Pj7EcYUKFWRsbCwV8+TJE8p37NgxembcXIeldJYz4vXBgweyb9++pCvQMUcH5t5ddcPRfDqqPOGIgjBwcnJyZO3atWWJEiXkvXv3aCAh3jTwoOnYsaOEoeHw+fNn+fLlS9mnTx8aeHFxcTIvL0+yUcIVeWE8+vXrJy9cuCBzc3M5+x9dP378KJ8/f04DHAb0xIkT9IyBe/PmTTlq1Cjp6ekpN2zYQOU5A2t+fr5s06aNWbwwWu/evZPLli0jDqKioiTkv3//TvLgq2TJknLNmjXy4cOH8tOnT5pR27ZtGxlzcMK4kYkHXmHpZoEYKBKcnDlzRuPDWdDcUTecxaUjyrXbMPEgePHiBQ3qyMjIQnHxIGHPgI0NMnA5GRkZpITNmjXTyuGBOX/+fNm7d28t3pYbDOZSpUqRETXND8MIgwUD6yysGGjh4eGmVRd4hkGuWLGihHcEzxLh9u3bhAvcmQbGWrduXTlt2jTTZK0thaX/lsEgEdwueE3FihWT8+bNcyoyd9QNpxJqR+F2Gyb2aNLT02lQz5gxg4wMGxM9Npbt378/eSdI4zjcwzjhjR8YGEhlXbp0STNY+/btk40bNyYvAXKstPryi7pn+aNHj1LZPA1E/fzbv38/DQBMpxiXo7HC6LRo0aJQqFxvfHw84Zw7d6588+aNDA4Ollu3bqV8375903hBBOdZtGiRxBTP1FO1lF4omL+cwLjZg4SX7IzgzrrhDD4dUabDDNOkSZNoIB0+fJhwcWebgsTUBN7Apk2bfpPjPDAaHh4eMikpiWTgNdSqVUveunWLntm7Mi27qGdW8jlz5hDOtWvX0oDGIMZAR4BRhceUkJBAz87Aircy1rkKC8zBtWvXyAOF9waDvGLFCspizuAzH3fv3iX8R44cKVC8pfQCwgZ6YC4wdcfaI7xNBG4PDDHWCbEWiZfJrFmzbELvzrphE2EuyGS3YWKM8AKwKP327VuO0q6sYIiAW451HHNGhhVk165dNMBQJtZcMJDT0tKoPJbRCv/DG1bmLl26SG9vb5mdnV0gJ69jtGvXjrwyJDoDqyWPCfUCK34YcDCUkydPJqzmjJK+EVinw8YBG1Z9Gu4tpZvKG+EZ/e3v7y979uxJcFiXxowZQ97huXPnKP78+fPEVWpqqgabZeElY/rcrVs3iaWG6dOnS7xIOSjdYCaMc3WIYXr16hVNgdq2bUst444210xMl2DAsCaFYE4W0znsyvn6+kqsiyQnJ5OspYFprj593IcPH6hcDPZBgwbJoUOHyoEDB0osxGMKhAV3LIJycAZWSx4T6uZ28kYABiECDzTGp78yj02aNJEwvqbBUrqpvFGes7KyyOAsWbJEg7Rq1SqKO336NMVx27Brx+t3HIddVi8vL7l+/XqSxYYH+h+elj64s27oeTDKvZc9JxNwjsPT01NcvnxZ4LxM+/btqTjEFytWTLs/f/68aNOmDT2/ePFCFC9eXPj7+9Ozh4cHXfkP8pYpU0b06tVLrFu3TkRERIiEhAQq38vLNriM88aNG+Lt27eiY8eOIiYmRiAe9QMP4oKDgxkGXf8G1h8/fgi0E21+/fq1CAoKEqmpqWLWrFl0j384asoZwHJ8iRIlxLt37wq040/S9Rk+f/4s4uPjRU5ODvVvYf/kFDjAoZ+fn3aOSl+OI+5PnTpFxUAPED59+iQSExNFkyZNRNu2bUkvoGv5+fkCuD9+/EhywJadnU1nxqBLw4cPp/imTZtSf3fu3JmelW4QDYb7Y9tI/68ZrLAnTpygmKioKLqywuJ68eJFMX36dHH06FFKgwLBmPn4+PxXivnL9+/fKWHmzJnaoDMvaTmWcZ49e5aER44cKYYOHfpbRlZSTnA1Vhh3GKXk5GTi68KFCyI2NlasXbtWbNmyRUyYMIEMARt9xokruEYArzAopsFSul7e19dXrFy5Uh9l1/3GjRvFggULqG1oo7kAnYBRjoyMFEuXLtVEDh06JICnUaNGFHf69Glq3+jRo+kZfQY+Hj16JD58+CDCwsK0vGvWrCGDNXbsWOINdRw7dkx8/fpVdOrUieSUbmh0GerGLsOEjkbHHj58mJQDbyMExEEBMUhwIrl///5ao6FESIPhgadiGjCAoKAnT54UlStXJi8BcTywTOX/5JnzQimBDUoODHpDhLbgpw+uwAo8wIGft7e3SElJIc4yMzOJUxhQGCZ4j+PHjyd4yMNtYrwcB+4wkE2DpXRTeUc+Dxs2TOBnbQBm6EG7du1IV+DtwotFv7ABQj+CNxgscKiv58iRIyTbokULzfODDqCf2YNnHt1ZN6ztF1fI22WY0KmYNly/fl2EhoaKSpUqEWYoDn4YXBkZGWLu3LlaWypUqEBvLLzdcM8DBgJ8//TpU/H48WNSMhg3vQHRCrLiBooI7wceU5UqVUTjxo1JOYGxqOAKrOCQ+Tpw4IBYuHAhGXpMZ8FHhw4daDp77tw5cenSJREeHm4WMg+wvLw8rR/0gpbS9bJGmcpBr16+fEkeJF5+O3bsEJiCwRiVK1eOIGPqigAdw4tx0KBBWlOgY9WqVRMBAQGabh08eJDkOL/SDY0uQ93YbJh4Pr9161bycBo2bChevXpFSoM3G6ZuSUlJom/fvqQY3Or69euTt/T+/XsyTByPKwYi3vj79++n6FatWlF5ehlz95s3b6Y1kWnTpmleBctBieG6Hz9+XOTm5pILj2dMmfCmLSo4A6tpfffv3yeDc+XKFRqAEydOJF6AG8bk5s2bomzZssQN2gdOa9asKUJCQgoUBVkY32fPnmnTFL2ApXS9rKOncvqyrbmHPiGgvatXrybPOzo6mtoOzxJLB1hTwnQXL6/09PQCfQqvCN4me8KLFi0SWVlZAjwiKN0gGoz5x9ZV+O3bt9OOGQ7+VapUSdaoUUPWq1dP1q9fX4aEhNCOGr6Z4++3uB6cRcGOG75NQtBv/+/cuVO2atWKvrvDpy34ng1nWLDNXVTA9i/sGjCYhr179xJObKPjmALqxk4fdmcQitrpcgZW0125lStXSuxm4jOVrl270g87UQjYWZowYQLtGuLoQOfOnWnHbcuWLQWw8w4UPgUCDwcPHqR0/mMpneWMdkW/45hAnTp1ZGJiogbv6tWrsmHDhrJ9+/bE2+DBg+kQKgS4rejX169fy+joaNp5HTduHH3OhPNx2G1FULqhUWq4G7yJXRbYCGAAYmseQW+YbAUCBd68eXORJ6qtLdtZWE0Nk7W4zMkzh/iYumzZstpBRJa1lM5y/+oVJ8ZhtKdOnUovJ3Nn7axp+7+kG9a025WyBVd7nezUYaqGgF0STNfwzG62rVWjjJIlS9JaTGBgoK3F/JbPGVh/q8RBEbx+hF2oESNGCF534eItpbPcv3TFehzWnbDmhiWB2rVrC0z5ccyA15xsbe+/pBu2cuD0fK60gqgLrjZ+OM2N6aC9gd9e+Bcgixcvtre4AvkdjRWF/8nJ7wIgLDxw+w8dOkSnvuEN8HQGWS2lWyj+/zYZn6hgWov/woBPi3DSG1N5/lyHebG1gf+Cbtjadlfkc+lUDg3iQZOZmSlbt25t9b8uMUfKlStXaC2Kv3kzJ2NLnDOwYiqn/88JtuAyzYOPfLEOw/9LynTQWUo3Le9feJ49ezatdfbo0YPWlnAinI0S96s97eQyHKnHf0M37OHAmXldbpjQGB44+DCV15qc2Uh7ynY0VqyHFfWvYazFivUjfFqzcOFCysp4uRxL6SynrtYzwFw7So9drRvWt9h1OTxQldPni6oCxYBiQDFgBQMuXfy2ApcSVQwoBtyYAWWY3LjzVdMVA0ZlQBkmo/aMwqUYcGMGlGFy485XTVcMGJUBZZiM2jMKl2LAjRlQhsmNO181XTFgVAaUYTJqzyhcigE3ZkAZJjfufNV0xYBRGfgf6zq3IP+EKpgAAAAASUVORK5CYII=" alt="" />

(5)间隔损失函数(hinge loss)

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAN4AAAArCAYAAAAXODYdAAASwUlEQVR4Ae1cB1RVx9b+zq1ceougoGLFiC1gQdSgRgy2YAW7Yklif5ryokaNiQWFiJpgr08To8+WRMMTsKGIXYkVwQIaQRS8iHDrOftf51K8SJUg+Jtz1nIxZ9qe/c3+9uyZM1eGiAjCIyAgIFClCIiqVJogTEBAQMCAgEA8wRAEBKoBAYF41QC6IFJAQCCeYAMCAtWAgEC8agBdECkgIBBPsAEBgWpAQCBeNYAuiBQQEIgn2ICAQDUgIBCvGkAXRAoICMQTbEBAoBoQEIhXDaALIgUEBOIJNiAgUA0IvEHEe4Cd0/qj76cbcS1bXzYU+mxc2zgZAwcuRbRwzbtsvIQabxQCbwbxzodh5KAh2K7qhO5dm8FOypQNkkgKu2Zd4NPpCdZ/5I9RP5yFwL/SYEvB7s/8MXDyZlwvj2Mrrau3vUyfjeubp2Hw4O8R85p0ZSrrZ0F61S389+t5+C1FAomYg0bDou3E9ZjibQF5KTyii2EYPWkOjtf+GquXzUAP51fVNBkHQz7HtOAU+K/egYX9nVGKuFft/O2of2ktxgbvQJqiJz7o2gH+Az1RSy7O1e3PjRi3eD9Sn3GA1Bq1+nyJdWNbvpLelzZOxaYHHTHli/5obCp5pbZvZGVOg4ex+7An9jzOxaRA1n0GNkzwqNyh8sSrjIfVPKTj6yZSexN+4TGl9hODaO81FWm5knvX607Tqu4uZNflSwpPKrle2SV3KHxUM7JsNYn23NORvuwG/5wal1fT2A425NxvMf1mjDHL0l9/zKNxneypdp+5tCgoiL4b35pMHbxp9Nxw+ostC8VU+m3mUBrYuw+1tAfB9TOKfqp+y3C9R/sX9iOXGu/T3P0PqBRTfmW98cotSm2QTht6WZKlhQctvF5qRSJWS3f2DKeGMmca9t/HZVQuR3H8OupR24HaLDxFmrJsphzdvQ1VWP1ZWtujHtm+P51+v1tYI60qlha2tiY0GUq/3ckryzpN091AMG1Bi2JVpC3cJO9NR89v7qRZo8fSlJlzaPasvtREpCAL9zkUm6kptsXrytTknKEt//6SluxPpBzd65KSSAeGNyVL96m0P0lPbCWJqdQ9HqnEUFgyYBg9cpTPoC1lcWbVSTi8+TAeOXujt6cFuFLqlqeIGvRGYBcz3Ni2GgfuqcCWp9HbXIfT4f6BHxFyWAffSTPR28VYWR30l/dh8zUOdbuNg29+mZkHxg/1gAl7BRt2X4Cm2AlkIFbYo17TThg261ssWDgG7azkYPRcle+xZRknsT4kBFvOZEHx2iLcBug1eyo803YiaMd56P+uoeZNQyUPlwVbTovX66/j9GUVRE3awtNOgnwPwKrv4GDIchxOl0MmYaFR2+CDGV+hjwuD+78H4fvD6ZBJWWg1zTAkaDQ8zWSGPR3D2KBt6waQ7IvEr1c16NlAgbxdjLHFVXKahfrOAYSE/A9pCmvYeA3H/AEcfvrXKkRl6mFaoya6fvItBtQHMqMWY+bOW1CJLVDTwRuB8wegUZHRJGLH5yGITNeAGDksHR3wfuB8DOArcmrcORCC5YfTIZdJwOp1aDp0MYY1e4IjK1fgcBqPlR4thgdhbHszSDTJOLwpEqlOndGrvaXBseVjTDoVLu7+FffFLDq7ukDLb+94sBgOLp7ecJTcRPK5U0jVeKKh7GUUxTCp0xXjvsgdvDpDCRVHqMqNNWmzcWbzF1i7PxrXJBKID87GsAc1IBNLYeoZiKWBnjCTFd3pV9S2qFEfjOm8BOO2rsEfg1qiT32Tv21blUy8IpZUQgYLXUo87jwXwb5xI9gyRpPL8Iczafjf8p24BRneGzEfvnmjFMvkeBazDlsvyNBhSjBGGmMrYmDbqDHsZWeRFJ8Knd4aJsVpx6pxNzwUy/+4C1U5vlpAbIJ6Padjeo96xfbHSOSQiW9i37JjUF7OgDbSBDpzBUzNk3AkdAMirjjhid9N3EzgoFCYAxd/wuK1B3Glvgt2D/WAXArwRPhz7xLsOhuD05ebwK25CaA5i+2LY3HgSn247BkKDwkDiUSMR+HLsSsBkLefgM2jRRCJ5VDknELYslg4+01Daxlj4IBOfx2xl1QQNW4HL/sXjs0wITo94u/cgYSTwtbGFkw+I8FAb2YOO45DamIirrNaNICiFE5Rla9yhvEzDKRmlrCyMoOcEYHk5rCytsolnmmuIy7W8CpoWwxjC882DSD59RD2X1HDtwTiabVaXLhwAR4eHpDJZMUOIT+zONPML3uNfzlwjzOgFAN2draggokHxPI66DlzNRTJV9H7Fy26T/sKPWvnDsXZdzwC9m/CSesJWL1yHJoXGqEIZGsHO4iRmfEYHNekUKnxi0gshVQmA2sk17i8UFosg1RszHDjUjHkdXzx5Q8axO+6hEPpSmS6D8CMYH80RCb2K+MwePs8/FQ3AP1GfIfpXpbAzRqIcV+AA2GRuNe/JVylEkCbheM/zseik02x+EokvmrGy7gB+1MeWHggDJF3+6OVqwXq9JyJjZYW0I2ZgjO2DdHETQ65RIXs5y4YOGkUJi78BB2s+LYsVA/jcTurGMfGFzNMnmEQ2EIhiggiezvYEoHS0pDGVlJcZQxZJaQZqSk8hgfBw2MRzhy5DfKbh1Wzm5bZc4Vti3fqjV1hLztXqlPXaDSIjo5Gs2bN3lTiARCLDct14YnPx84aHT72Q72tKxC+IQpTWnWDk5igS47A9kMKdF/dF+/yIa3RQmloybKGvZ1Y/HJBfr98GxPU7fE5QnoY5f2tJEGVkYksrQhZ1h0wO9gfTnx/OinqNLaGiXUKanovx3SvXPJq6rRDZ0czJGuUSOM4uPI8kJmh45QgBI3uimkG0vEdvIsePZ2x8r4ayjQOetdcdc07Tsbi+XEYPXYOPpmoQ8C7Z3E80Qv/2phPOr4t79jScx2bvV0hx1a6qmKIHR3hIJNBZu8Ix9JwLL2j4ktZDZKjVmFVZBLU5Yw26vpMwASfujApMqU6PFPmQM8RKEeJTC1gVfoikzemitjWC6euzHgMlm0C5C1Z58+fR4sWLQxEYxgGCoUC/N+ynmpa8QDKI4m02MllIHLrj9HvbcGc/WsQPacbAmoBCeFbcdNlBNZ6O/G8LfrkkVlTyIsXrVbpOfyXe7EIEgcbmObwX1N44Flo+c0TSUCaDOSQnSFbpLeGdQ0RRPpcx2MYi9QM7v7/hjueIHzRHBxTakCcFo/O5EBD1pBJC2+hXId8j++fqTHq068wu15nhB37DF3tX9KqVMeGvJVOhMJOigX7+DHS+a7s7GAnEpUSZr4kr1yvBL36OTKVmVCX5yxArEGWmkXl/geUFbQtI6cuzmMNv7rx/9zd3Q3a86RTq9X8l4Iy0agi4hF0mkSc+PlPmHfvjTZOEkjsrGHJAg+fPgVTzDglkpbw/6QtVky5iPAzjzCgXRL+sykJ7831QwuZuBiDIDDKp3gKFo7WdhCVFEayGjyI3oItxx9AU57JF8ng5B2IQG9n5H9zLhHVvMkpsdxQUPwBVFLUauw9fRonT+kgs2EgIh2ePtOCP7coTDv+3RL1GilQy8kOd5TWeBifBNSpW1hsaY6NYWBtYQkWz6HMyoKIs8qLHvSg+Ju4ptfgucIMNi82f4X7ruib2AT1/eZgtV9FO6icdq9uWy8iNB1x0OlYxMScQHj4IcMKFxUVZXBgPOHKs7/jtahk4omLX4nAgX0UgeCpa+C2pwvcnWwhd2qC+mYcLscnQMl1h2XBuWYeuCIRHDr2RiuzIzi5ait2JkfjqHkgVnapk3sC9/IccByUCbeQpjVBO9da4LdOxT8c1OlJSLiVWO7DFdZNlUeA4nssyM1bZQrei03kYWQItXjvwIfQR7FsxkRsoY+x5fBW9KuR2/DqHDd0CdODzWVfQW/3I5Zj6fZ0dJ45G567gjF36lzU2bYGo1or8uqIILLNc2xKZRHHxkhlcPNqA9PtR3H11Dlkjq8FEwP+UuTcu40MMkOLXp1QW14iiAVjyd8yvMiowlS+c5HJiuw6Sh3Fq9oWCEym0uDUa1rZgSFCxtOMgpUtIyPDEF6amJjAz698XqUcyJaqQqFCRsFCnUUgksDU2hIvQm4xHkYdRbKpA7rUzD1hYyRN0LaFHLsTzuP8Mw61FS+HNSJIa3fFmG7O8N+2ErPuZcN9/kq0kkmKWe0Aokycu3Abeseu6Okmh7TQyIxexAo0HLgIWwca5f2tJAOFjTnkfB9ZarCGMBOA1AKWColhQuTmNrnRJ59tqUO2kl+0TGFlxcPPIef2buy9aoaaMz8tIF3O2Q1YsPsmnus8YM6f2OWNMefyLixauQcWk/divu87gI8Dbg8Ygc++dobThoXoZrhyJ4bEyRX1TMng2DI5n8KOjd/ndhsDX4eD+PngWvyR3A+B9QCoLmHLnvN47vAh5g73hAkvVK9BYvQuxP5ljqYf9kKrGsZGzkDBqZHFH8ZITGFtmT/KvwVoORszYGzMIcnSIONeKjiD6FSc2JsEl66WSDxwHvdZJ3gNfh8NiziQV7MtcBwyDU5djraNHGGukKCPX39wECMuLg7+/v4QlRhilaBOJX2IJ1aTQic3TaOOpvwJsxl1nLSIgkNDKTQ0lJYFfUt9nPj8XrQhPTtXpF5Dib8MJhdpbfpoY2IJw9CTJnYmNVGAUCOAdiVqSr4OlriZPqpbg977JppUr+0WQ9Fh6lQ36NfgwdSQX7pMvGjq5hhKVano0aktNON9cz5QpAb+wfRbvIpUqlv0e8ggqsfXNe1E/9oUQylallQJO+kL7zqEhn3pu+BQCl0RSvMnDySv2lICrMh7xiaKTkqimJ9CaEJrGcGmBy2NSSWdTkePz/xC45sZTvXJ0S+INp9KIQ1HpM+5Sat8Hcii0Wja90hX9LoTy9KFNSOp97tiqtd3AYWEhtKSSe2pZuPeNCrsHOnybv9w2U9ofU++/9o07ajScJuF06ZQ7I4wWhEaTIsmtCdTXh+zjjRpUTCFrviRfo5NqZLbQ9qcExTK46ZoRxOXBNHSkHk0Y87PdPHecvLmx4RO9ENaVlHdDdNYftvi9I9o35hGZNHAn366mU3G5hUREUEqlaqoYZSRU2krHsdm4t7lv+DQMwABYhbqu8cRmZC/eWMgaxuA4TYd0UQmNlgJI5bBpf8UTA47ic+XBSGq23p0q/OydxADrVrDy9QZpuMmoLeLsbc1rpuMI0tX4JiFH9aO8CwlzDRuUxlpAqtPwY0zOrTw94c7p8fDuGRk9m8OJikOye/4wt9fBD17FvGpWnjXfIT4Mxze8/dHG06P+5dvQzm4PRwb+mNp6FNkBB/EychwkMwCzYYFYbtPcyzceQUZyXG4nd4KOHcGD2v1waD6UqQmZUHvbo3M26eR2TQA/k0JOu1pXEr0Q4CnI2Qm9eAz4n0sCTyC/4TfR99R/JJm9IhEcP9kKzY6u2DGhhOICCdAXhdjQpZjQR+HgoqMSAYza2uYSe1gayvK3ZvoM5EYG4lDN3PAimugZ0AAxPz30eORSBAp4GrzAfxaOxas0gWdVXJCquiIaaGzcPX7cNw9fAT3LXwxZ/cQtNDFYsDIkagDd7RQlBT7lNe2ACbpELYeyUT9kRPRr4Fpof2Zj49PxbQqg5ivvVh/OoQC2thSwxFhFPWQF5dDiSfDKS4lV3Tm5fn0gdsw2nFDVcjTvBjYXxQVNoKavNOOpv98t+QV8UWDf0xKrzlBQV5OhOaf0pH7FVRbn0jB7eXk4rmAIrPUJaweFey7ipuxmid0Izqc4lJzBZdtW3y9+3RsogdZuo2h7QnaSrOvSr4kXUEkY4JpUJ/uNPKbTbRh2zqa3NKafJYl0JMrURQ8wJO8Qo7Scz5+Mn5YDaVdPEjb1s+iYT59aODSk5UGirGY/99pjnQxQdTfw5ZcA9fRUYNjK79GnDaHrod/TP06+FPI8VLC/PJ3Wa011enH6KvWNtQtJL502yoYZQodWx9Ibu+0pinbbpPuJRMsqFaBxJtBPMPA9XR0UV/6cNCnNNBFSiK3gTS5kwu5dllAh1XF/NxAl0V/rhlPvXp9S1HGQXcFQHjbm7DRi6lvjy405Ost9EtEHKVpy3fHns1Op4igIRQao660W/nVibVWeYI+by4nNO5fum2xWnr8ZwTt3DqHhnbtQX4Lj5fwS42Ka/MGES9PCS6Rtk3qSV06eZGXzwTafqcY0lVc339wSw1FfONLHwaG0eVnxf/g520HR5d9g7ZOLIdt6bIobtUY8vWdRxGv6SeGlfYL9IrtMIVWAgL/TARKut/xz0RD0FpAoIoQEIhXRUALYgQEjBEQiGeMhpAWEKgiBATiVRHQghgBAWMEBOIZoyGkBQSqCAGBeFUEtCBGQMAYAYF4xmgIaQGBKkJAIF4VAS2IERAwRkAgnjEaQlpAoIoQ+D8Frqz7SXZDCwAAAABJRU5ErkJggg==" alt="" />

在不考虑过拟合的情况下。损失函数越小,模型就越好。

Spark中定义梯度和损失函数求解的类包含一个Gradient基类及其三个实现类:

Gradient

梯度计算的抽象类,定义了计算梯度值和损失函数值的compute函数:

def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = {
val gradient = Vectors.zeros(weights.size)
val loss = compute(data, label, weights, gradient)
(gradient, loss)
}

后面的梯度计算类都继承子Gradient类并实现compute函数。

LeastSquaresGradient

实现了最小二乘法进行线性回归的梯度计算方法。

其对compute函数进行的覆写

override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = {
val diff = dot(data, weights) - label
val loss = diff * diff / 2.0
val gradient = data.copy
scal(diff, gradient)//常数乘以向量 更新后的gradient即为梯度 gradient=(y - lable)* x
(gradient, loss)
}

使用场景:

1、 參数预计的方法是最小化误差的平方和,其他预计方法不适合用此梯度算子。

2、 Spark实现的是线性回归的梯度计算。非线性回归的梯度计算不适合使用此算子。

HingeGradient

实现了最大化分类间距的hinge loss进行參数预计的梯度下降方法,对compute函数进行的覆写:

class HingeGradient extends Gradient {
override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = {
val dotProduct = dot(data, weights)
// Our loss function with {0, 1} labels is max(0, 1 - (2y - 1) (f_w(x)))
// Therefore the gradient is -(2y - 1)*x
val labelScaled = 2 * label - 1.0
if (1.0 > labelScaled * dotProduct) {
val gradient = data.copy
scal(-labelScaled, gradient)
(gradient, 1.0 - labelScaled * dotProduct)
} else {
(Vectors.sparse(weights.size, Array.empty, Array.empty), 0.0)
}
}

使用场景:

适用于利用最大化分类间隔思想来构建分类器,典型的使用如SVM。

LogisticGradient

使用对数似然损失函数对Logistic分类/回归进行參数预计的梯度下降方法。实现的代码比較长,在此就不贴了,在内部分了2分类和多分类两种情况进行计算。

spark.mllib源代码阅读-优化算法1-Gradient的更多相关文章

  1. Spark MLlib中KMeans聚类算法的解析和应用

    聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性), ...

  2. Spark MLlib之水塘抽样算法(Reservoir Sampling)

    1.理解 问题定义可以简化如下:在不知道文件总行数的情况下,如何从文件中随机的抽取一行? 首先想到的是我们做过类似的题目吗?当然,在知道文件行数的情况下,我们可以很容易的用C运行库的rand函数随机的 ...

  3. 用Spark学习矩阵分解推荐算法

    在矩阵分解在协同过滤推荐算法中的应用中,我们对矩阵分解在推荐算法中的应用原理做了总结,这里我们就从实践的角度来用Spark学习矩阵分解推荐算法. 1. Spark推荐算法概述 在Spark MLlib ...

  4. Spark 实践——基于 Spark MLlib 和 YFCC 100M 数据集的景点推荐系统

    1.前言 上接 YFCC 100M数据集分析笔记 和 使用百度地图api可视化聚类结果, 在对 YFCC 100M 聚类出的景点信息的基础上,使用 Spark MLlib 提供的 ALS 算法构建推荐 ...

  5. Spark MLlib之线性回归源代码分析

    1.理论基础 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Le ...

  6. Spark MLlib LDA 基于GraphX实现原理及源代码分析

    LDA背景 LDA(隐含狄利克雷分布)是一个主题聚类模型,是当前主题聚类领域最火.最有力的模型之中的一个,它能通过多轮迭代把特征向量集合按主题分类.眼下,广泛运用在文本主题聚类中. LDA的开源实现有 ...

  7. Spark MLlib 示例代码阅读

    阅读前提:有一定的机器学习基础, 本文重点面向的是应用,至于机器学习的相关复杂理论和优化理论,还是多多看论文,初学者推荐Ng的公开课 /* * Licensed to the Apache Softw ...

  8. Apache Spark源码走读之22 -- 浅谈mllib中线性回归的算法实现

    欢迎转载,转载请注明出处,徽沪一郎. 概要 本文简要描述线性回归算法在Spark MLLib中的具体实现,涉及线性回归算法本身及线性回归并行处理的理论基础,然后对代码实现部分进行走读. 线性回归模型 ...

  9. Spark MLBase分布式机器学习系统入门:以MLlib实现Kmeans聚类算法

    1.什么是MLBaseMLBase是Spark生态圈的一部分,专注于机器学习,包含三个组件:MLlib.MLI.ML Optimizer. ML Optimizer: This layer aims ...

随机推荐

  1. JavaScript:如何获得 Private、Privileged、Public 和 Static 成员(属性和方法)【翻译+整理】

    本文内容 背景 把我们的对象放在一起 添加一个私有(Private)的属性 添加一个特权(Privileged)的方法 添加一个公共(Public)的属性和方法 添加一个静态(Static)的属性 我 ...

  2. C#.NET常见问题(FAQ)-索引器indexer有什么用

    索引器就是名值对,你声明一个名值对的类,就可以给数组的指定元素赋值,也可以很方面的访问到指定元素值对应的下标(个人认为完全可以自己写一个类似的list来实现,没有必要多此一举学一个额外的方法)   复 ...

  3. SpringBoot 启动错误搜集

    Spring Boot:The Bean Validation API is on the classpath but no implementation could be found https:/ ...

  4. word你必须懂的。

    1.所有文字都有默认样式 2.可以调整样式,选择字体,级别,段落,缩进等设置

  5. python 3使用binascii方法的报错解决

    环境是python 3 问题: 使用binascii方法一直出现报错TypeError: a bytes-like object is required, not 'str' #coding: utf ...

  6. C# delegate (1)

    delegate是委托,本身不能解决跨线程访问控件的问题,直接调用委托还是会报错 Invoke指定用主线程中的控件去调用这个委托,相当于主线程来执行这个函数 在codeProject网站中找到的. C ...

  7. GDB 反向调试(Reverse Debugging)

    这个挺有意思 http://blog.csdn.net/CherylNatsu/article/details/6436570 使用调试器时最常用的功能就是step, next, continue,这 ...

  8. 开启mysql远程登录

    开发过程中经常遇到远程访问mysql的问题,每次都需要搜索,感觉太麻烦,这里记录下,也方便我以后查阅. 首先访问本机的mysql(用ssh登录终端,输入如下命令): mysql -uroot -p 输 ...

  9. golang 垃圾回收机制

    用任何带 GC 的语言最后都要直面 GC 问题.在以前学习 C# 的时候就被迫读了一大堆 .NET Garbage Collection 的文档.最近也学习了一番 golang 的垃圾回收机制,在这里 ...

  10. V-rep学习笔记:力传感器

    VREP中可以添加力传感器,用于刚性连接在两个物体之间以测量这两个物体之间的作用力或力矩.如下图所示,力传感器可以测量沿着X.Y.Z三个坐标轴的力和力矩: [Forces and torques me ...