一、ROW_NUMBER()的用法

语法:ROW_NUMBER() OVER(PARTITION BY COLUMN ORDER BY COLUMN)

row_number()从1开始,为每一条分组记录返回一个数字,这里的ROW_NUMBER() OVER (ORDER BY colum DESC) 是先把colum列降序,再为降序以后的每条colum记录返回一个序号。
示例:

Row_Num    colum

1              2200

2              2150

3             1780

4             1125

Row_NUMBER() OVER (PARTITION BY COL1 ORDER BY COL2) 表示根据COL1分组,在分组内部根据 COL2排序,而此函数计算的值就表示每组内部排序后的顺序编号(组内连续的唯一的,没有重复值)

实例1:

初始化数据

  1.  
    create table employer (employerid int ,deptid int ,salary decimal(8,1))
  2.  
     
  3.  
    insert into employer values(1,1,15000.0)
  4.  
     
  5.  
    insert into employer values(2,1,10000.0)
  6.  
     
  7.  
    insert into employer values(3,2,19000.0)
  8.  
     
  9.  
    insert into employer values(4,2,21000.0)
  10.  
     
  11.  
    insert into employer values(5,3,14500.0)
  12.  
     
  13.  
    insert into employer values(6,3,10000.0)
  14.  
     
  15.  
    insert into employer values(7,3,44500.0)
  16.  
     
  17.  
    insert into employer values(8,4,22500.0)
  18.  
     
  19.  
    insert into employer values(9,4,35500.0)
  20.  
     
  21.  
    insert into employer values(10,4,35500.0)
  22.  
     
  23.  
    insert into employer values(11,4,36000.0)
  24.  
     
  25.  
    insert into employer values(12,4,36000.0)

数据显示为

employerid       deptid      salary
----------- ----------- ---------------------------------------
1                         1          15000.0

2                         1          10000.0

3                         2          19000.0

4                         2          21000.0

5                         3          14500.0

6                         3          10000.0

7                         3          44500.0

8                         4          22500.0

9                         4          35500.0

10                       4          35500.0

11                       4          36000.0

12                       4          36000.0

需求:根据部门分组,显示每个部门的工资等级

预期结果:

employerid       deptid      salary              Leve  
----------- ----------- ---------------------------------------
1                         1          15000.0               1

2                         1          10000.0               2

4                         2          21000.0               1

3                         2          19000.0               2

7                         3          44500.0               1

5                         3          14500.0               2

6                         3          10000.0               3

11                       4          36000.0               1

12                       4          36000.0               2

9                         4          35500.0               3

10                       4          35500.0               4

8                         4          22500.0               5

SQL脚本:

SELECT *, ROW_NUMBER() OVER (PARTITION BY deptid ORDER BY salary desc) Leve FROM employeer

实例2:

初始化数据

  1.  
    create table tb_EmployerSign (SignId int ,EmployerId int ,SignDate datetime)-- 创建员工签到表
  2.  
     
  3.  
    insert into tb_EmployerSign values(1,1,'2014-09-15 18:21:38.130' )
  4.  
     
  5.  
    insert into tb_EmployerSign values(2,2,'2014-09-16 18:21:38.130' )
  6.  
     
  7.  
    insert into tb_EmployerSign values(3,3,'2014-09-14 18:21:38.130' )
  8.  
     
  9.  
    insert into tb_EmployerSign values(4,4,'2014-09-16 18:21:38.130' )
  10.  
     
  11.  
    insert into tb_EmployerSign values(5,1,'2014-09-17 18:21:38.130' )
  12.  
     
  13.  
    insert into tb_EmployerSign values(6,2,'2014-09-17 19:21:38.130' )
  14.  
     
  15.  
    insert into tb_EmployerSign values(7,3,'2014-09-19 18:21:38.130' )
  16.  
     
  17.  
    insert into tb_EmployerSign values(8,4,'2014-09-20 18:21:38.130' )

数据显示为

SignId       EmployerId              SignDate
----------- ----------- -------------------------------------------
1                      1            2014-09-15 18:21:38.130

2                      2            2014-09-16 18:21:38.130

3                      3            2014-09-14 18:21:38.130

4                      4            2014-09-16 18:21:38.130

5                      1            2014-09-17 18:21:38.130

6                      2            2014-09-17 19:21:38.130

7                      3            2014-09-19 18:21:38.130

8                      4            2014-09-20 18:21:38.130

需求:查询三天内没有签到的员工最后一次签到的信息

假如今天是2014-09-21 则预期结果:

SignId             EmployerId             SignDate                        OutDateNumb
-------------------------------------------------------------------------------------------------------
       5                           1          2014-09-17 18:21:38.130                   4

6                           2          2014-09-17 19:21:38.130                   4

SQL脚本:

  1.  
    select SignId,EmployerId,SignDate,datediff(dd,SignDate,getdate()) as OutDateNumb
  2.  
     
  3.  
    from (select *,ROW_NUMBER() over(PARTITION by EmployerId order by signId DESC) numb from EmployerSign) tb
  4.  
     
  5.  
    where tb.numb=1 and datediff(dd,SignDate,getdate())>3<span style="font-size:14px;"><strong>
  6.  
    </strong></span>

二、RANK()的用法

语法:RANK() OVER (PARTITION BY COL1 ORDER BY COL2) 

RANK()的用法和ROW_NUMBER()类似,只不过RANK()是跳跃排序,有两个第三名时接下来就是第五名(同样是在各个分组内).

例如执行如下SQL语句之后实例1中的数据显示结果如下:

SELECT *, RANK() OVER (PARTITION BY deptid ORDER BY salary desc) Leve FROM employer

结果:

employerid       deptid      salary              Leve  
----------- ----------- ---------------------------------------
1                         1          15000.0               1

2                         1          10000.0               2

4                         2          21000.0               1

3                         2          19000.0               2

7                         3          44500.0               1

5                         3          14500.0               2

6                         3          10000.0               3

11                       4          36000.0               1

12                       4          36000.0               1

9                         4          35500.0               3

10                       4          35500.0               3

8                         4          22500.0               5

三、DENSE_RANK()的用法

语法:DENSE_RANK() OVER(PARTITION BY COL1 ORDER BY COL2)

DENSE_RANK()的用法和ROW_NUMBER()类似,只不过DENSE_RANK()是连续排序,有两个第二名时仍然跟着第三名(同样在各个分组内)。

例如执行如下SQL语句后实例1中的数据显示如下:

SELECT *, DENSE_RANK() OVER (PARTITION BY deptid ORDER BY salary desc) Leve FROM employee

结果:

employerid       deptid      salary              Leve  
----------- ----------- ---------------------------------------
1                         1          15000.0               1

2                         1          10000.0               2

4                         2          21000.0               1

3                         2          19000.0               2

7                         3          44500.0               1

5                         3          14500.0               2

6                         3          10000.0               3

11                       4          36000.0               1

12                       4          36000.0               1

9                         4          35500.0               2

10                       4          35500.0               2

8                         4          22500.0               3

SQL中ROW_NUMBER()/RANK() /DENSE_RANK() OVER函数的基本用法的更多相关文章

  1. sqlserver 中row_number,rank,dense_rank,ntile排名函数的用法

    1.row_number() 就是行号 2.rank:类似于row_number,不同之处在于,它会对order by 的字段进行处理,如果这个字段值相同,那么,行号保持不变 3.dense_rank ...

  2. SQL Server中排名函数row_number,rank,dense_rank,ntile详解

    SQL Server中排名函数row_number,rank,dense_rank,ntile详解 从SQL SERVER2005开始,SQL SERVER新增了四个排名函数,分别如下:1.row_n ...

  3. 大数据学习day29-----spark09-------1. 练习: 统计店铺按月份的销售额和累计到该月的总销售额(SQL, DSL,RDD) 2. 分组topN的实现(row_number(), rank(), dense_rank()方法的区别)3. spark自定义函数-UDF

    1. 练习 数据: (1)需求1:统计有过连续3天以上销售的店铺有哪些,并且计算出连续三天以上的销售额 第一步:将每天的金额求和(同一天可能会有多个订单) SELECT sid,dt,SUM(mone ...

  4. 知方可补不足~row_number,rank,dense_rank,ntile排名函数的用法

    回到目录 这篇文章介绍SQL中4个很有意思的函数,我称它的行标函数,它们是row_number,rank,dense_rank和ntile,下面分别进行介绍. 一 row_number:它为数据表加一 ...

  5. SQL Server - 四种排序, ROW_NUMBER() /RANK() /DENSE_RANK() /ntile() over()

    >>>>英文版 (更简洁易懂)<<<< 转载自:https://dzone.com/articles/difference-between-rownum ...

  6. ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()

    ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()   今天女票问我SqlServer的四种排序,当场写了几句Sql让她了解,现把相关Sql放上来. 首先, ...

  7. Hive学习之路 (十四)Hive分析窗口函数(二) NTILE,ROW_NUMBER,RANK,DENSE_RANK

    概述 本文中介绍前几个序列函数,NTILE,ROW_NUMBER,RANK,DENSE_RANK,下面会一一解释各自的用途. 注意: 序列函数不支持WINDOW子句.(ROWS BETWEEN) 数据 ...

  8. 在MySQL中实现Rank高级排名函数【转】

    MySQL中没有Rank排名函数,当我们需要查询排名时,只能使用MySQL数据库中的基本查询语句来查询普通排名.尽管如此,可不要小瞧基础而简单的查询语句,我们可以利用其来达到Rank函数一样的高级排名 ...

  9. 在MySQL中实现Rank高级排名函数

    MySQL中没有Rank排名函数,当我们需要查询排名时,只能使用MySQL数据库中的基本查询语句来查询普通排名.尽管如此,可不要小瞧基础而简单的查询语句,我们可以利用其来达到Rank函数一样的高级排名 ...

随机推荐

  1. C# EF Code First Migrations数据库迁移

    1.EF Code First创建数据库 新建控制台应用程序Portal,通过程序包管理器控制台添加EntityFramework. 在程序包管理器控制台中执行以下语句,安装EntityFramewo ...

  2. QtCore.QMetaObject.connectSlotsByName:根据objectName和signal自动绑定slot

    from PyQt5.QtWidgets import (QWidget , QVBoxLayout , QHBoxLayout, QLineEdit, QPushButton) from PyQt5 ...

  3. 利用jQuery实现回收站删除效果

    jQuery是一款非常强大的Javascript脚本库,我们开发者喜欢jQuery的原因除了它代码简洁外,更多的是因为jQuery插件非常丰富.今天我们用一个示例来解说jQuery是如何实现拖拽的. ...

  4. Linux中的软链接与硬链接

    软链接相当于windows的快捷方式,当源文件不存在时,软链接失效. 链接是指向文件名,当指向的文件名字删除的时候,就找不到源文件了.硬链接是指向文件本身,删除一个文件名字,还是可以找到源文件的.ls ...

  5. php模拟post提交请求与调用接口

    /** * 模拟post进行url请求 * @param string $url * @param string $param */ function request_post($url = '', ...

  6. 微信小程序/支付宝小程序 WxParse解析富文本(html)代码

    小程序本身并不太支持html代码,比如html的img.span.p这个时候改这么办呢?需要用到一个小插件WxParse来实现. 小程序高级交流群:336925436  微信小程序支持富文本编辑器代码 ...

  7. 19 Go的全能ORM简单入门

    gorm 昨天我的ldap账户改了以后,openfalcon(v2.1)-dashboard竟然无法登陆了!显然,没有把我的密码同步到本地数据库里面,怎么办?只能改openfalcon用户认证的源码了 ...

  8. phpcms v9 get的强大之处(列表页调用点击数)

    {pc:get sql="select * from v9_art as g left join v9_art_data as p on p.id=g.id and g.catid=12 o ...

  9. linux环境中,查看域名的DNS信息?

    需求说明: 今天在linux主机上,要查询一个域名是在哪个DNS上进行解析的,这个域名下面还有哪些的地址 操作过程: 1.linux环境中通过nslookup命令来进行查看 [deployer@CBS ...

  10. linux中如何通过echo输出!(叹号)? -bash: !": event not found

    需求描述: 今天在做通过echo结合passwd给用户改密码的过程中,出现无法修改的错误. 错误如下: [root@testvm ~]# useradd mytest [root@testvm ~]# ...