Spark的word count
word count
package com.spark.app import org.apache.spark.{SparkContext, SparkConf} /**
* Created by Administrator on 2016/7/24 0024.
*/
object WordCount {
def main(args: Array[String]) {
/**
* 第1步;创建Spark的配置对象SparkConf,设置Spark程序运行时的配置信息
* 例如 setAppName用来设置应用程序的名称,在程序运行的监控界面可以看到该名称,
* setMaster设置程序运行在本地还是运行在集群中,运行在本地可是使用local参数,也可以使用local[K]/local[*],
* 可以去spark官网查看它们不同的意义。 如果要运行在集群中,以Standalone模式运行的话,需要使用spark://HOST:PORT
* 的形式指定master的IP和端口号,默认是7077
*/
val conf = new SparkConf().setAppName("WordCount").setMaster("local")
// val conf = new SparkConf().setAppName("WordCount").setMaster("spark://master:7077") // 运行在集群中 /**
* 第2步:创建SparkContext 对象
* SparkContext是Spark程序所有功能的唯一入口
* SparkContext核心作用: 初始化Spark应用程序运行所需要的核心组件,包括DAGScheduler、TaskScheduler、SchedulerBackend
* 同时还会负责Spark程序往Master注册程序
*
* 通过传入SparkConf实例来定制Spark运行的具体参数和配置信息
*/
val sc = new SparkContext(conf) /**
* 第3步: 根据具体的数据来源(HDFS、 HBase、Local FS、DB、 S3等)通过SparkContext来创建RDD
* RDD 的创建基本有三种方式: 根据外部的数据来源(例如HDFS)、根据Scala集合使用SparkContext的parallelize方法、
* 由其他的RDD操作产生
* 数据会被RDD划分成为一系列的Partitions,分配到每个Partition的数据属于一个Task的处理范畴
*/ val lines = sc.textFile("D:/resources/README.md") // 读取本地文件
// val lines = sc.textFile("/library/wordcount/input") // 读取HDFS文件,并切分成不同的Partition
// val lines = sc.textFile("hdfs://master:9000/libarary/wordcount/input") // 或者明确指明是从HDFS上获取数据 /**
* 第4步: 对初始的RDD进行Transformation级别的处理,例如 map、filter等高阶函数来进行具体的数据计算
*/
val words = lines.flatMap(_.split(" ")).filter(word => word != " ") // 拆分单词,并过滤掉空格,当然还可以继续进行过滤,如去掉标点符号 val pairs = words.map(word => (word, 1)) // 在单词拆分的基础上对每个单词实例计数为1, 也就是 word => (word, 1) val wordscount = pairs.reduceByKey(_ + _) // 在每个单词实例计数为1的基础之上统计每个单词在文件中出现的总次数, 即key相同的value相加
// val wordscount = pairs.reduceByKey((v1, v2) => v1 + v2) // 等同于 wordscount.collect.foreach(println) // 打印结果,使用collect会将集群中的数据收集到当前运行drive的机器上,需要保证单台机器能放得下所有数据 sc.stop() // 释放资源 }
}
注意spark的套路:
1. 创建配置配置,创建sparkcontext;
2. 获取数据源;
3. flatmap进行元素独立;
4. filter进行过滤;
5. map封装为元组;
6. reduce进行计数;
按照数量排序
package com.spark.app import org.apache.spark.{SparkContext, SparkConf} /**
* Created by Administrator on 2016/7/24 0024.
*/
object WordCountSorted {
def main(args: Array[String]) {
def conf = new SparkConf().setAppName("WordCountSorted").setMaster("local")
def sc = new SparkContext(conf) val lines = sc.textFile("D:/resources/README.md")
val words = lines.flatMap(_.split(" ")).filter(word => word != " ")
val pairs = words.map(word => (word, 1)) /**
* 在这里通过reduceByKey方法之后可以获得每个单词出现的次数
* 第一个map将单词和出现的次数交换,将出现的次数作为key,使用sortByKey进行排序(false为降序)
* 第二个map将出现的次数和单词交换,这样还是恢复到以单词作为key
*/
val wordcount = pairs.reduceByKey(_ + _).map(pair => (pair._2, pair._1)).sortByKey(false).map(pair => (pair._2, pair._1))
wordcount.collect.foreach(println) sc.stop()
}
}
你可以采用一条龙的方式来进行上述实现,感觉那是一个畅快!
Spark的word count的更多相关文章
- spark编写word count
创建SparkContext对象的时候需要传递SparkConf对象,SparkConf至少需要包含spark.master和spark.app.name这两个参数,不然的话程序不能正常运行 obje ...
- [Spark Core] Spark Shell 实现 Word Count
0. 说明 在 Spark Shell 实现 Word Count RDD (Resilient Distributed dataset), 弹性分布式数据集. 示意图 1. 实现 1.1 分步实现 ...
- Spark:java api实现word count统计
方案一:使用reduceByKey 数据word.txt 张三 李四 王五 李四 王五 李四 王五 李四 王五 王五 李四 李四 李四 李四 李四 代码: import org.apache.spar ...
- Spark: 单词计数(Word Count)的MapReduce实现(Java/Python)
1 导引 我们在博客<Hadoop: 单词计数(Word Count)的MapReduce实现 >中学习了如何用Hadoop-MapReduce实现单词计数,现在我们来看如何用Spark来 ...
- Hive Word count
--https://github.com/slimandslam/pig-hive-wordcount/blob/master/wordcount.hql DROP TABLE myinput; DR ...
- mac上eclipse上运行word count
1.打开eclipse之后,建立wordcount项目 package wordcount; import java.io.IOException; import java.util.StringTo ...
- MapReduce工作机制——Word Count实例(一)
MapReduce工作机制--Word Count实例(一) MapReduce的思想是分布式计算,也就是分而治之,并行计算提高速度. 编程思想 首先,要将数据抽象为键值对的形式,map函数输入键值对 ...
- Word Count作业
Word Count作业 一.个人Gitee地址:https://gitee.com/Changyu-Guo 二.项目简介 该项目主要是模拟Linux上面的wc命令,基本要求如下: 命令格式: wc. ...
- Word Count
Word Count 一.个人Gitee地址:https://gitee.com/godcoder979/(该项目完整代码在这里) 二.项目简介: 该项目是一个统计文件字符.单词.行数等数目的应用程序 ...
随机推荐
- svn出错:directory 'xxxx' is out of date
- OC Copy和Property
- 059——VUE中vue-router之路由嵌套在文章系统中的使用方法:
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- hadoop kafka import/export data (8)
reference: http://kafka.apache.org/quickstart need to solve issue ISSUE 1: [2019-01-29 15:59:39,272] ...
- 如何获取选定部分的HTML
其实这个程序很简单,首先是如何获取选定部分的HTML,还记得这段吗: HTMLDoc := WebBrowser1.Document as IHTMLDocument2; SelectRange : ...
- 团队作业之现场UML设计
项目UML设计(团队) 团队信息 团队名:第三视角 各成员学号及姓名 姓名 学号 博客链接 张扬(组长) 031602345 http://www.cnblogs.com/sxZhangYang/p/ ...
- hibernate缓存清除(转)
文章有点杂,这不是原文,谢谢贡献者 http://www.360doc.com/content/16/0413/16/32415095_550307388.shtml 一.hibernate一级缓存( ...
- OC基础:类的扩展.协议 分类: ios学习 OC 2015-06-22 19:22 34人阅读 评论(0) 收藏
//再设计一个类的时候,有些方法需要对外公开(接口),有些仅供内部使用. 类的扩展:为类添加新的特征(属性)或者方法 对已知类: 1.直接添加 2.继承(在其子类中添加实例变量和方法) 3.使用ext ...
- ThinkPHP CodeIgniter URL访问举例
ThinkPHP URL访问: http://localhost/think/index.php/Home/login/func/[name/syt/password/123/] ht ...
- 如何使用 python3 将RGB 图片转换为 灰度图
首先,介绍第一种方法, 使用 PIL 库, PIL库是一种python语言常用的一个图形处理库. 关于 PIL 库的安装本文就不介绍了. from PIL import Image I ...