题目链接:http://poj.org/problem?id=3522

Time Limit: 5000MS Memory Limit: 65536K

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

在所有生成树里,找到“最大边权值 减去 最小边权值”最小的那棵生成树。

那么,对于已经某个确定的最小边的所有生成树,我们找到最小生成树,它的“最大边权值 减去 最小边权值”就是这些生成树里最小的。

然后,我们枚举最小边即可。

 #include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 102
#define M 5000
#define INF 2147483647
int n,m;
struct Edge{
int u,v,w;
}e[M];
bool cmp(Edge a,Edge b){return a.w<b.w;}
int par[N];
int find(int x){return( par[x]==x ? x : par[x]=find(par[x]) );}
int kruskal(int st)//获得最小边,作为开始边
{
int i,cnt=;
for (i=;i<=n;i++) par[i]=i;//初始化并查集
for (i=st;i<m;i++)//遍历后面的每条边
{
int x=find(e[i].u),y=find(e[i].v);
if (x != y){//如果这条边的连接的左右节点还未连通
par[y]=x;//将这条边连通
if (++cnt==n-) break;//边计数增加1,如果边数到达了n-1条,那么一棵生成树已完成,跳出
}
}
if (cnt<n-) return -; //如果从开始边往后遍历,遍历完了所有边,依然无法产生一颗生成树,那么返回-1
return e[i].w-e[st].w; //否则就返回这棵生成树的“最大边权值 减去 最小边权值”的值
}
int main()
{
while (scanf("%d%d",&n,&m) && n!=)
{
for (int i=;i<m;i++) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
sort(e,e+m,cmp);//把边按权值按从小到大排序
int tmp,ans=INF;
for (int i=;i<m;i++)//枚举最小边
{
tmp=kruskal(i);
if(tmp==-) break;//如果从这条最小边开始已经无法产生生成树了,之后显然也不会有生成树了,那么我们就直接跳出即可
if(tmp<ans) ans=tmp;//记录下最小的那个“最大边权值 减去 最小边权值”
}
if(ans==INF) printf("-1\n"); //如果答案没被更新过,那么显然连一棵生成树都没有,按题目要求打印-1
else printf("%d\n",ans);//否则就打印出答案即可
}
return ;
}

POJ 3522 - Slim Span - [kruskal求MST]的更多相关文章

  1. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  2. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  3. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  4. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  5. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  6. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  7. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  8. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  9. 最小生成树POJ3522 Slim Span[kruskal]

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7594   Accepted: 4029 Descrip ...

随机推荐

  1. Tomcat------如何更改被IIS占用的80端口

    1.打开cmd,运行'netstat -ano'发现80端口被pid=4的进程占用 2.打开任务管理器,发现pid=4的进程,其实是system进程,其对应的进程描述是NT kernel & ...

  2. Maven发布war包到Tomcat

    一.修改Tomcat下配置文件tomcat-users.xml,然后启动 <role rolename="manager-gui"/> <role rolenam ...

  3. vs2010,vs2012如何连接vss2005,vss2008

    打开vs2010.依次打开[工具]-[选项]-[源代码管理] 这个时候可以看到管理插件中有Microsoft Visual SourceSafe选项(若没有该选项,重新安装VSS即可). 连接上项目后 ...

  4. springJdbc in 查询,Spring namedParameterJdbcTemplate in查询

    springJdbc in 查询,Spring namedParameterJdbcTemplate in查询, SpringJdbc命名参数in查询,namedParameterJdbcTempla ...

  5. Spring中神奇@aotuWrited

    好久没有写博客了,放假就是充电学习的时候,的确一直是这样做的.来给自己一点掌声.我们还是进入今天的主题吧. 我们自己写代码一般会向下面这样干啊,因为这样简单,其余交给spring去做吧.Spring会 ...

  6. 使用 TXT 文本存储

    将爬取的数据以 TXT 文本形式存储: import requests data = requests.get('http://www.baidu.com/').text with open('/tm ...

  7. U3D 使用VS编程组件

    http://visualstudiogallery.msdn.microsoft.com/6e536faa-ce73-494a-a746-6a14753015f1 http://visualstud ...

  8. Windows下POSIX线程编程(pThread)环境搭建

    系统: Windows 编辑器:codeblocks13.12 1. 简介: Windows有一个叫 POSIX Threads for Win32 的开源项目给出了一个功能比较完善的Windows下 ...

  9. 服务器搭建--Linux安装erlang

    1.安装依赖环境: 1)安装GCC GCC-C++ Openssl等模块,安装过就不需要安装了 yum -y install make gcc gcc-c++ kernel-devel m4 ncur ...

  10. Ubuntu apt-get彻底卸载软件包

    https://blog.csdn.net/get_set/article/details/51276609 如果你关注搜索到这篇文章,那么我可以合理怀疑你被apt-get的几个卸载命令有点搞晕了. ...