Ministry

Time Limit: 1000MS Memory Limit: 65536K

Total Submissions: 4761 Accepted: 1528 Special Judge

Description

Mr. F. wants to get a document be signed by a minister. A minister signs a document only if it is approved by his ministry. The ministry is an M-floor building with floors numbered from 1 to M, 1<=M<=100. Each floor has N rooms (1<=N<=500) also numbered from 1 to N. In each room there is one (and only one) official.

A document is approved by the ministry only if it is signed by at least one official from the M-th floor. An official signs a document only if at least one of the following conditions is satisfied:

a. the official works on the 1st floor;

b. the document is signed by the official working in the room with the same number but situated one floor below;

c. the document is signed by an official working in a neighbouring room (rooms are neighbouring if they are situated on the same floor and their numbers differ by one).

Each official collects a fee for signing a document. The fee is a positive integer not exceeding 10^9.

You should find the cheapest way to approve the document.

Input

The first line of an input file contains two integers, separated by space. The first integer M represents the number of floors in the building, and the second integer N represents the number of rooms per floor. Each of the next M lines contains N integers separated with spaces that describe fees (the k-th integer at l-th line is the fee required by the official working in the k-th room at the l-th floor).

Output

You should print the numbers of rooms (one per line) in the order they should be visited to approve the document in the cheapest way. If there are more than one way leading to the cheapest cost you may print an any of them.

Sample Input

3 4

10 10 1 10

2 2 2 10

1 10 10 10

Sample Output

3

3

2

1

1

Hint

You can assume that for each official there always exists a way to get the approval of a document (from the 1st floor to this official inclusively) paying no more than 10^9.

This problem has huge input data,use scanf() instead of cin to read data to avoid time limit exceed.

简单的动态规划题,需要记录路径,在DP时,要分从左到右和从右到左两种情况

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
int a[105][505];
int dp[105][505];
int b[105][505];
int n,m;
int res[50005];
int main()
{
int ans;
int MAX=pow(10.0,9.0)*2;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(res,0,sizeof(res));
memset(b,0,sizeof(b));
ans=MAX;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&a[i][j]);
dp[i][j]=MAX;
b[i][j]=j;
}
}
for(int i=1;i<=m;i++)
dp[1][i]=a[1][i];
for(int i=2;i<n;i++)
{
int term;
dp[i][1]=dp[i-1][1]+a[i][1];
for(int j=2;j<=m;j++)
{
if(dp[i-1][j]>dp[i][j-1])
b[i][j]=j-1;
dp[i][j]=min(dp[i-1][j],dp[i][j-1])+a[i][j];
}
term=dp[i][m];
dp[i][m]=dp[i-1][m]+a[i][m];
for(int j=m-1;j>=1;j--)
{
if(dp[i][j+1]+a[i][j]<dp[i][j])
b[i][j]=j+1;
dp[i][j]=min(dp[i][j],dp[i][j+1]+a[i][j]);
}
dp[i][m]=min(dp[i][m],term);
if(term<dp[i][m])
b[i][m]=m-1;
}
int num=0;
for(int i=1;i<=m;i++)
{
if(ans>dp[n-1][i]+a[n][i])
{
ans=dp[n-1][i]+a[n][i];
num=i;
}
}
res[0]=num;
int tag=n;
int cot=0;
while(tag>1)
{
res[cot+1]=b[tag][res[cot]];
if(b[tag][res[cot]]==res[cot])
tag--;
cot++;
}
for(int i=cot;i>=0;i--)
printf("%d\n",res[i]); }
return 0;
}

POJ-2353 Ministry(动态规划)的更多相关文章

  1. POJ 2353 Ministry

    Ministry Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4220   Accepted: 1348   Specia ...

  2. poj 3783 Balls 动态规划 100层楼投鸡蛋问题

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098409.html 题目链接:poj 3783 Balls 动态规划 100层楼投鸡蛋问题 ...

  3. poj 2229 一道动态规划思维题

    http://poj.org/problem?id=2229 先把题目连接发上.题目的意思就是: 把n拆分为2的幂相加的形式,问有多少种拆分方法. 看了大佬的完全背包代码很久都没懂,就照着网上的写了动 ...

  4. [POJ 2063] Investment (动态规划)

    题目链接:http://poj.org/problem?id=2063 题意:银行每年提供d种债券,每种债券需要付出p[i]块钱,然后一年的收入是v[i],到期后我们把本金+收入取出来作为下一年度本金 ...

  5. [POJ 2923] Relocation (动态规划 状态压缩)

    题目链接:http://poj.org/problem?id=2923 题目的大概意思是,有两辆车a和b,a车的最大承重为A,b车的最大承重为B.有n个家具需要从一个地方搬运到另一个地方,两辆车同时开 ...

  6. POJ 1088 滑雪 -- 动态规划

    题目地址:http://poj.org/problem?id=1088 Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当 ...

  7. poj 1159 Palindrome - 动态规划

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well ...

  8. poj 2385【动态规划】

    poj 2385 Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14007   Accepte ...

  9. poj 1837 Balance 动态规划 (经典好题,很锻炼思维)

    题目大意:给你一个天平,并给出m个刻度,n个砝码,刻度的绝对值代表距离平衡点的位置,并给出每个砝码的重量.达到平衡状态的方法有几种. 题目思路:首先我们先要明确dp数组的作用,dp[i][j]中,i为 ...

  10. HOJ 2124 &POJ 2663Tri Tiling(动态规划)

    Tri Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9016 Accepted: 4684 Descriptio ...

随机推荐

  1. python怎么写可读性好的面向过程的长篇代码?

    最近接受老代码,mmp的,说是重新运行运行起来,那还不如重写呢,因为有很多毛病,不能直接运行,pep8就不用妄想奢望了,还有包括语法错误问题和内存严重泄露的问题(运行几分钟后python.exe进程达 ...

  2. [OpenCV] Samples 03: kmeans

    注意Mat作为kmeans的参数的含义. 扩展:高维向量的聚类. 一.像素聚类 #include "opencv2/highgui.hpp" #include "open ...

  3. 如何在O(n)的时间复杂度内找出数组中出现次数超过了一半的数

    方法一:每次取出两个不同的数,剩下的数字中重复出现次数超过一半的数字肯定,将规模缩小化.如果每次删除两个不同的数,这里当然不是真的把它们踢出数组,而是对于候选数来说,出现次数减一,对于其他数来说,循环 ...

  4. bat批处理设置静态、动态、ping、查看网络配置

    @echo off :startIP set /p source=S or D or C or P or E: echo source:%source% if /i "%source%&qu ...

  5. U3D功能脚本备忘

    编译器属性 属性 介绍 用例 AddComponentMenu 在Component菜单中添加新的菜单项 [AddComponentMenu("Duan/Script/TestScript& ...

  6. Hadoop核心架构HDFS+MapReduce+Hbase+Hive内部机理详解

    转自:http://blog.csdn.net/iamdll/article/details/20998035 分类: 分布式 2014-03-11 10:31 156人阅读 评论(0) 收藏 举报 ...

  7. 自己搭建CDN服务器静态内容加速-LuManager CDN使用教程

    为什么要自己来搭建一个CDN服务器实现网站访问加速?一是免费CDN服务稳定性和加速效果都不怎么行:二是用国内的付费CDN服务价格贵得要死,一般的草根站长无法承受:三是最现实的问题国内的CDN要求域名B ...

  8. sqlserver连接问题收集

    问题1. 使用navicat连接本地sqlserver,报错“命名管道提供程序无法打开与 sql server 的连接 [2]” 解决: 参考本篇文章 <持续收集中>

  9. linux CentOS 7 安装 RabbitMQ 3.6.3, Erlang 19.0

    1. 安装erlang 安装依赖环境 yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel unixO ...

  10. 浅析JavaBean

    一.概述 JavaBean组件本质上是一个Java类,只是这个类的编码要遵循一些约定.用户可以使用JavaBean将功能.处理.值.数据库访问和其他任何可以用java代码创造的对象进行打包,并且其他的 ...