tf.random_normal()
tf.random_normal()函数用于从服从指定正太分布的数值中取出指定个数的值。
tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
shape: 输出张量的形状,必选
mean: 正态分布的均值,默认为0
stddev: 正态分布的标准差,默认为1.0
dtype: 输出的类型,默认为tf.float32
seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样
name: 操作的名称
以下程序定义一个w1变量:
# -*- coding: utf-8 -*-)
import tensorflow as tf
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# sess.run(tf.initialize_all_variables()) #比较旧一点的初始化变量方法
print w1
print sess.run(w1)
输出:
<tf.Variable 'Variable:0' shape=(2, 3) dtype=float32_ref>
[[-0.81131822 1.48459876 0.06532937]
[-2.4427042 0.0992484 0.59122431]]
变量w1声明之后并没有被赋值,需要在Session中调用run(tf.global_variables_initializer())方法初始化之后才会被具体赋值。
tf中张量与常规向量不同的是执行"print w1"输出的是w1的形状和数据类型等属性信息,获取w1的值需要调用sess.run(w1)方法。
---------------------
作者:-牧野-
来源:CSDN
原文:https://blog.csdn.net/dcrmg/article/details/79028043
版权声明:本文为博主原创文章,转载请附上博文链接!
tf.random_normal()的更多相关文章
- TensorFlow随机值:tf.random_normal函数
tf.random_normal 函数 random_normal( shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=No ...
- 深度学习原理与框架-Tensorflow基本操作-变量常用操作 1.tf.random_normal(生成正态分布随机数) 2.tf.random_shuffle(进行洗牌操作) 3. tf.assign(赋值操作) 4.tf.convert_to_tensor(转换为tensor类型) 5.tf.add(相加操作) tf.divide(相乘操作) 6.tf.placeholder(输入数据占位
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示 ...
- tensorflow 生成随机数 tf.random_normal 和 tf.random_uniform 和 tf.truncated_normal 和 tf.random_shuffle
____tz_zs tf.random_normal 从正态分布中输出随机值. . <span style="font-size:16px;">random_norma ...
- tensorflow生成随机数的操作 tf.random_normal & tf.random_uniform & tf.truncated_normal & tf.random_shuffle
tf.random_normal 从正态分布输出随机值. random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name ...
- tf.random_normal()函数
tf.random_normal()函数用于从服从指定正太分布的数值中取出指定个数的值. tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf. ...
- tf.truncated_normal和tf.random_normal使用方法的区别
1.tf.truncated_normal使用方法 tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=No ...
- TF Boys (TensorFlow Boys ) 养成记(三)
上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生 ...
- TF-卷积函数 tf.nn.conv2d 介绍
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...
- TF中conv2d和kernel_initializer方法
conv2d中的padding 在使用TF搭建CNN的过程中,卷积的操作如下 convolution = tf.nn.conv2d(X, filters, strides=[1,2,2,1], pad ...
随机推荐
- springMVC学习(4)-商品修改(RequestMapping解释、controller返回值)
一.需求: 操作流程: 1.进入商品查询列表页面 2.点击修改,进入商品修改页面,页面中显示了要修改的商品(从数据库查询) 3.在商品修改页面,修改商品信息,修改后,点击提交 代码: ItemsMap ...
- pandas的set_index和reset_index方法
import pandas as pd data = pd.DataFrame(np.arange(1,10).reshape(3,3),index=["a","b&qu ...
- python protobuf序列化repeated运用
下面是proto描述文件的定义 message Person { required string name = 1; required int32 id = 2; optional string em ...
- python的类
一.语法 python类的机制是 C++ 的类机制和 Modula-3 的类机制的混合体: 允许多继承的类继承机制,派生类可以重写它父类的任何方法,一个方法可以调用父类中重名的方法: 1.动态特性: ...
- Java内存原型分析:基本知识
转载: Java内存原型分析:基本知识 java虚拟机内存原型 寄存器:我们在程序中无法控制 栈:存放基本类型的数据和对象的引用,但对象本身不存放在栈中,而是存放在堆中 堆:存放用new产生的数据 静 ...
- Mybatis 为什么不要用二级缓存
https://www.cnblogs.com/liouwei4083/p/6025929.html mybatis 二级缓存不推荐使用 一 mybatis的缓存使用. 大体就是首先根据你的sqlid ...
- 0_Simple__UnifiedMemoryStreams
使用 OpenMP 和 pthreads 两种环境,利用实现统一内存编址,计算基本的矩阵乘法 result = α * A * x + β * result . ▶ 源代码 #include < ...
- linux 之 压缩 / 解压
压缩解压 tar 即可压缩也可以解压 c 压缩 如果没有z.j参数,则表示,只打包,不压缩. 就说, t 查看 z 以gzip方式压缩 相当于 gzip ?.. j 以bzip方式压缩 bzip2 ? ...
- Redis hash数据结构
1, 新增一个 hash 或者 新增数据 => hset key field value 2, 获取某个字段值 => hset key field 3, 获取所有字段值 => hge ...
- delphi 编译生成ipa文件 adhoc步骤
找IPA文件 开发模式ipa文件和发布模式ipa文件,路径不同. http://www.itnose.net/detail/6101808.html 一.开发模式Development 不需要真机,可 ...