PCL点云分割(2)
关于点云的分割算是我想做的机械臂抓取中十分重要的俄一部分,所以首先学习如果使用点云库处理我用kinect获取的点云的数据,本例程也是我自己慢慢修改程序并结合官方API 的解说实现的,其中有很多细节如果直接更改源程序,可能会因为数据类型,或者头文件等各种原因编译不过,会导致我们比较难得找出其中的错误,首先我们看一下我自己设定的一个场景,然后我用kinect获取数据
观察到kinect获取的原始图像的,然后使用简单的滤波,把在其中的NANS点移除,因为很多的算法要求不能出现NANS点,我们可以看见这里面有充电宝,墨水,乒乓球,一双筷子,下面是两张纸,上面分别贴了两道黑色的胶带,我们首先就可以做一个提取原始点云的平面的实验,那么如果提取点云中平面,之前有一些基本的实例,使用平面分割法
程序如下
#include <iostream>
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/console/parse.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_plane.h>
#include <pcl/sample_consensus/sac_model_sphere.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp> int
main (int argc, char** argv)
{
// 读取文件
pcl::PCDReader reader;
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZRGBA>), cloud_f (new pcl::PointCloud<pcl::PointXYZRGBA>);
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr final (new pcl::PointCloud<pcl::PointXYZRGBA>);
reader.read ("out0.pcd", *cloud);
std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //* // 下采样,体素叶子大小为0.01
pcl::VoxelGrid<pcl::PointXYZRGBA> vg;
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZRGBA>);
vg.setInputCloud (cloud);
vg.setLeafSize (0.01f, 0.01f, 0.01f);
vg.filter (*cloud_filtered);
std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl; //*
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
// Create the segmentation object
pcl::SACSegmentation<pcl::PointXYZRGBA> seg;
// Optional
seg.setOptimizeCoefficients (true);
// Mandatory
seg.setModelType (pcl::SACMODEL_PLANE);
// seg.setModelType (pcl::SACMODEL_LINE );
seg.setMethodType (pcl::SAC_RANSAC);
seg.setDistanceThreshold (0.01); seg.setInputCloud (cloud_filtered);
seg.segment (*inliers, *coefficients); if (inliers->indices.size () == )
{
PCL_ERROR ("Could not estimate a planar model for the given dataset.");
return (-);
} std::cerr << "Model coefficients: " << coefficients->values[] << " "
<< coefficients->values[] << " "
<< coefficients->values[] << " "
<< coefficients->values[] <<std::endl;
return ();
}
运行生成的可执行文件会输出平面模型的参数
平面模型的参数
此图是采样后的点云图
也可以在这个程序中直接实现平面的提取,但是为了更好的说明,我是将获取平面参数与平面提取给分成两个程序实现,程序如下
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/ModelCoefficients.h>
#include <pcl/filters/project_inliers.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp> boost::shared_ptr<pcl::visualization::PCLVisualizer>
simpleVis (pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud)
{ boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
viewer->setBackgroundColor (, , );
viewer->addPointCloud<pcl::PointXYZ> (cloud, "project_inliners cloud");
viewer->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, , "sample cloud");
//viewer->addCoordinateSystem (1.0, "global");
viewer->initCameraParameters ();
return (viewer);
} int
main (int argc, char** argv)
{
// 读取文件
pcl::PCDReader reader;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_projected (new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr final (new pcl::PointCloud<pcl::PointXYZ>);
reader.read ("out0.pcd", *cloud);
std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //* // 下采样,体素叶子大小为0.01
pcl::VoxelGrid<pcl::PointXYZ> vg;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
vg.setInputCloud (cloud);
vg.setLeafSize (0.01f, 0.01f, 0.01f);
vg.filter (*cloud_filtered);
std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl; //* // Create a set of planar coefficients with X=Y=
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
coefficients->values.resize ();
coefficients->values[] = 0.140101;
coefficients->values[] = 0.126715;
coefficients->values[] = 0.981995;
coefficients->values[] = -0.702224; // Create the filtering object
pcl::ProjectInliers<pcl::PointXYZ> proj;
proj.setModelType (pcl::SACMODEL_PLANE);
proj.setInputCloud (cloud_filtered);
proj.setModelCoefficients (coefficients);
proj.filter (*cloud_projected); boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer;
viewer = simpleVis(cloud_projected);
while (!viewer->wasStopped ())
{
viewer->spinOnce ();
boost::this_thread::sleep (boost::posix_time::microseconds ());
} return ();
}
执行结果就如下
提取了平面,**********************8
微信公众号号可扫描二维码一起共同学习交流
PCL点云分割(2)的更多相关文章
- PCL点云分割(1)
点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞 ...
- PCL—点云分割(基于凹凸性) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5027269.html 1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割 ...
- PCL—点云分割(基于形态学) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5017428.html 1.航空测量与点云的形态学 航空测量是对地形地貌进行测量的一种高效手段.生成地形三维形貌一直 ...
- PCL—点云分割(超体聚类) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5013968.html 1.超体聚类——一种来自图像的分割方法 超体(supervoxel)是一种集合,集合的元素是 ...
- PCL—点云分割(最小割算法) 低层次点云处理
1.点云分割的精度 在之前的两个章节里介绍了基于采样一致的点云分割和基于临近搜索的点云分割算法.基于采样一致的点云分割算法显然是意识流的,它只能割出大概的点云(可能是杯子的一部分,但杯把儿肯定没分割出 ...
- PCL—点云分割(RanSaC)低层次点云处理
博客转载自:http://blog.csdn.net/app_12062011/article/details/78131318 点云分割 点云分割可谓点云处理的精髓,也是三维图像相对二维图像最大优势 ...
- PCL点云分割(3)
(1)Euclidean分割 欧几里德分割法是最简单的.检查两点之间的距离.如果小于阈值,则两者被认为属于同一簇.它的工作原理就像一个洪水填充算法:在点云中的一个点被“标记”则表示为选择在一个的集群中 ...
- PCL—点云分割(邻近信息) 低层次点云处理
博客转载自:http://www.cnblogs.com/ironstark/p/5000147.html 分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最 ...
- PCL—低层次视觉—点云分割(基于凹凸性)
1.图像分割的两条思路 场景分割时机器视觉中的重要任务,尤其对家庭机器人而言,优秀的场景分割算法是实现复杂功能的基础.但是大家搞了几十年也还没搞定——不是我说的,是接下来要介绍的这篇论文说的.图像分割 ...
随机推荐
- 用Python3发送邮件详解
[整个邮件系统是怎样工作的] 邮件自互联网诞生之初就有了,它和web服务一样也是采用的c/s架构,比如我们常见的邮件客户端有outlook.foxmail这些邮件客户端软件. 当我们要发邮件时客户端就 ...
- django ---- models继承
django 中各个models之前可以有继承关系.这种继承关系又可以分成三种情况: 1.简单继承 2.抽象继承 3.代理 一.简单继承: model定义 from django.db import ...
- fcitx五笔的安装[zz]
Fcitx──小企鹅输入法:Free Chinese Input Toy for X是国产软件的精品,是一个以GPL方式发布的.基于XIM的简体中文输入法集合(原为G五笔),包括五笔.五笔拼音.二笔. ...
- thinkphp AOP(面向切面编程)钩子和行为
在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是软件开发中的 ...
- mac os x Server 设置 MIME Types
最近搞了个 os x Server 把自己mac 配个web 服务器.研究下 ios 企业级应用发布. 网上很多地方都是这个: 对于 OS X Server,将以下 MIME 类型添加到 Web 服 ...
- PhotoShop CS6实现照片背景虚化效果
在摄影实践中,虚化背景是突出主体的常用手段.但是由于消费级DC镜头的实际焦距都很短,因此实现浅景深而虚化背景的难度较大.如果我们希望用消费级DC也能达到虚化背景突出主体的效果,那么,Photoshop ...
- 关于第三方cookie的作用域以及针对用户行为的使用
cookie,很多网站都会用的一个机制,可以保存用户的相关信息,token等等,很多人熟知的应该是第一方cookie,可以针对二级域名进行信息的保存,如果遇到跨域的情况,那么第一方cookie是没有用 ...
- UIView的alpha、hidden和opaque属性之间的关系和区别
转自:http://blog.csdn.net/wzzvictory/article/details/10076323 作者:wangzz 原文地址:http://blog.csdn.net/wzzv ...
- 聊一聊 Spring 中的线程安全性
Spring与线程安全 Spring作为一个IOC/DI容器,帮助我们管理了许许多多的“bean”.但其实,Spring并没有保证这些对象的线程安全,需要由开发者自己编写解决线程安全问题的代码. Sp ...
- IIS写权限漏洞 (HTTP PUT方法利用)
该漏洞的产生原因来源于服务器配置不当造成,利用IIS PUT Scaner扫描有漏洞的iis,此漏洞主要是因为服务器开启了 webdav的组件导致的可以扫描到当前的操作,具体操作其实是通过webdav ...