Exercise:Self-Taught Learning

习题链接:Exercise:Self-Taught Learning

feedForwardAutoencoder.m

function [activation] = feedForwardAutoencoder(theta, hiddenSize, visibleSize, data)

% theta: trained weights from the autoencoder
% visibleSize: the number of input units (probably 64)
% hiddenSize: the number of hidden units (probably 25)
% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this
% follows the notation convention of the lecture notes. W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute the activation of the hidden layer for the Sparse Autoencoder.
activation = sigmoid(W1 * data + repmat(b1, 1, size(data, 2))); %------------------------------------------------------------------- end %-------------------------------------------------------------------
% Here's an implementation of the sigmoid function, which you may find useful
% in your computation of the costs and the gradients. This inputs a (row or
% column) vector (say (z1, z2, z3)) and returns (f(z1), f(z2), f(z3)). function sigm = sigmoid(x)
sigm = 1 ./ (1 + exp(-x));
end

stlExercise.m

%% CS294A/CS294W Self-taught Learning Exercise

%  Instructions
% ------------
%
% This file contains code that helps you get started on the
% self-taught learning. You will need to complete code in feedForwardAutoencoder.m
% You will also need to have implemented sparseAutoencoderCost.m and
% softmaxCost.m from previous exercises.
%
%% ======================================================================
% STEP : Here we provide the relevant parameters values that will
% allow your sparse autoencoder to get good filters; you do not need to
% change the parameters below. inputSize = * ;
numLabels = ;
hiddenSize = ;
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-; % weight decay parameter
beta = ; % weight of sparsity penalty term
maxIter = ; %% ======================================================================
% STEP : Load data from the MNIST database
%
% This loads our training and test data from the MNIST database files.
% We have sorted the data for you in this so that you will not have to
% change it. % Load MNIST database files
mnistData = loadMNISTImages('mnist/train-images-idx3-ubyte');
mnistLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte'); % Set Unlabeled Set (All Images) % Simulate a Labeled and Unlabeled set
labeledSet = find(mnistLabels >= & mnistLabels <= );
unlabeledSet = find(mnistLabels >= ); numTrain = round(numel(labeledSet)/);
trainSet = labeledSet(:numTrain);
testSet = labeledSet(numTrain+:end); unlabeledData = mnistData(:, unlabeledSet); trainData = mnistData(:, trainSet);
trainLabels = mnistLabels(trainSet)' + 1; % Shift Labels to the Range 1-5 testData = mnistData(:, testSet);
testLabels = mnistLabels(testSet)' + 1; % Shift Labels to the Range 1-5 % Output Some Statistics
fprintf('# examples in unlabeled set: %d\n', size(unlabeledData, ));
fprintf('# examples in supervised training set: %d\n\n', size(trainData, ));
fprintf('# examples in supervised testing set: %d\n\n', size(testData, )); %% ======================================================================
% STEP : Train the sparse autoencoder
% This trains the sparse autoencoder on the unlabeled training
% images. % Randomly initialize the parameters
theta = initializeParameters(hiddenSize, inputSize); %% ----------------- YOUR CODE HERE ----------------------
% Find opttheta by running the sparse autoencoder on
% unlabeledTrainingImages % Use minFunc to minimize the function
addpath minFunc/
options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% sparseAutoencoderCost.m satisfies this.
options.maxIter = maxIter;% Maximum number of iterations of L-BFGS to run
options.display = 'on'; [opttheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
inputSize, hiddenSize, ...
lambda, sparsityParam, ...
beta, unlabeledData), ...
theta, options); %% ----------------------------------------------------- % Visualize weights
W1 = reshape(opttheta(:hiddenSize * inputSize), hiddenSize, inputSize);
display_network(W1'); %%======================================================================
%% STEP : Extract Features from the Supervised Dataset
%
% You need to complete the code in feedForwardAutoencoder.m so that the
% following command will extract features from the data. trainFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
trainData); testFeatures = feedForwardAutoencoder(opttheta, hiddenSize, inputSize, ...
testData); %%======================================================================
%% STEP : Train the softmax classifier %% ----------------- YOUR CODE HERE ----------------------
% Use softmaxTrain.m from the previous exercise to train a multi-class
% classifier. % Use lambda = 1e- for the weight regularization for softmax % You need to compute softmaxModel using softmaxTrain on trainFeatures and
% trainLabels lambda = 1e-;
options.maxIter = maxIter;
[softmaxModel] = softmaxTrain(hiddenSize, numLabels, lambda, trainFeatures, trainLabels, options); %% ----------------------------------------------------- %%======================================================================
%% STEP : Testing %% ----------------- YOUR CODE HERE ----------------------
% Compute Predictions on the test set (testFeatures) using softmaxPredict
% and softmaxModel
[pred] = softmaxPredict(softmaxModel, testFeatures); %% ----------------------------------------------------- % Classification Score
fprintf('Test Accuracy: %f%%\n', *mean(pred(:) == testLabels(:))); % (note that we shift the labels by , so that digit now corresponds to
% label )
%
% Accuracy is the proportion of correctly classified images
% The results for our implementation was:
%
% Accuracy: 98.3%
%
%

Test Accuracy: 98.208916%

【DeepLearning】Exercise:Self-Taught Learning的更多相关文章

  1. 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders

    Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...

  2. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

  3. 【DeepLearning】Exercise:Softmax Regression

    Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...

  4. 【DeepLearning】Exercise:Convolution and Pooling

    Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...

  5. 【DeepLearning】Exercise: Implement deep networks for digit classification

    Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...

  6. 【DeepLearning】Exercise:PCA in 2D

    Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...

  7. 【DeepLearning】Exercise:Vectorization

    Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...

  8. 【DeepLearning】Exercise:Sparse Autoencoder

    Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...

  9. 【UFLDL】Exercise: Convolutional Neural Network

    这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...

随机推荐

  1. 纯css解决div隐藏浏览器原生滚动条,但保留鼠标滚动效果的问题

    当我们的内容超出了我们的div,往往会出现滚动条,影响美观.尤其是当我们在做一些导航菜单的时候.滚动条一出现就破坏了UI效果.  我们不希望出现滚动条,也不希望超出去的内容被放逐,就要保留鼠标滚动的效 ...

  2. laravel 开启sql调试

    打开app\Providers\AppServiceProvider.PHP,在boot方法中添加如下内容 public function boot() { //sql调试 $sql_debug = ...

  3. VS2010自带的性能分析工具分析.NET程序的性能

    这篇博文给大家分享的是,如何使用VS自带的性能分析工具来分析我们编写的.NET程序,一边找出程序性能的瓶颈,改善代码的质量.在实际开发中,性能真的很重要,往往决定一个产品的生死~良好的用户体验的基础之 ...

  4. 详解管理root用户权限的sudo服务程序

    在你想要使用超级权限临时运行一条命令时,sudo 命令非常方便,但是当它不能如你期望的工作时,你也会遇到一些麻烦.比如说你想在某些日志文件结尾添加一些重要的信息,你可能会尝试这样做: $ echo & ...

  5. JAVA基础编程50题(4-6题)具体解释

    一.描写叙述 1.将一个正整数分解质因数.比如:输入90,打印出90=2*3*3*5. 程序分析:对n进行分解质因数,应先找到一个最小的质数k,然后按下述步骤完毕: (1)假设这个质数恰等于n,则说明 ...

  6. eclipse插件大全

    http://www.cnblogs.com/homezzm/archive/2009/11/27/1612054.html

  7. linux 文件系统与磁盘修复

    fsck修复受损的文件系统   Linux不正常关机,有时候再次启动时会报文件系统损坏,如何修复文件? 首先会让你输入root用户的密码.  1)出错的时候如果告诉你是哪一块硬盘的分区有问题,比如是/ ...

  8. 关于LayoutInflater的错误用法(警告提示:Avoid passing null as the view root)

    项目中用LayoutInflater加载xml布局一直飘黄警告,上网搜了搜发现没有解释明白的,到是找到了一篇外国的博文,但是竟然是英文...幸好以前上学时候的英语不是很差加上谷歌的辅助,简单翻一下!  ...

  9. HTML DOM 基础知识,成为javascript晋级高手的必备手册

    一.DOM 简介,什么是 DOM? 文件对象模型(Document Object Model,简称DOM),是W3C组织推荐的处理可扩展置标语言的标准编程接口. 标记语言,也称置标语言,是一种将文本( ...

  10. Zabbix,Nagios,OneAPM Servers 安装部署大比拼

    怎样高速实现对 Linux server的监控? 做过server监控的开发人员差点儿都知道 Zabbix 和 Nagios ,他们都是提供系统监控以及网络监控功能的开源解决方式.资历比較老.在不久前 ...