每次写博客,第一句话都是这样的:程序员很苦逼,除了会写程序,还得会写博客!当然,希望将来的一天,某位老板看到此博客,给你的程序员职工加点薪资吧!因为程序员的世界除了苦逼就是沉默。我眼中的程序员大多都不爱说话,默默承受着编程的巨大压力,除了技术上的交流外,他们不愿意也不擅长和别人交流,更不乐意任何人走进他们的内心!

最近悟出来一个道理,在这儿分享给大家:学历代表你的过去,能力代表你的现在,学习代表你的将来。我们都知道计算机技术发展日新月异,速度惊人的快,你我稍不留神,就会被慢慢淘汰!因此:每日不间断的学习是避免被淘汰的不二法宝。

当然,题外话说多了,咱进入正题!

简单的总结下对预防并发的理解:预防并发其实就是将并行执行修改为串行执行。(关于数据库并发问题大家可参考我的博客:C# 数据库并发的解决方案(通用版、EF版)

背景

C#命名空间:System.Collenctions和System.Collenctions.Generic 中提供了很多列表、集合和数组。例如:List<T>集合,数组Int[],String[] ......,Dictory<T,T>字典等等。但是这些列表、集合和数组的线程都不是安全的,不能接受并发请求。下面通过一个例子来加以说明,如下:

 class Program
{
private static object o = new object();
private static List<Product> _Products { get; set; }
/* coder:天才卧龙
* 代码中 创建三个并发线程 来操作_Products 集合
* System.Collections.Generic.List 这个列表在多个线程访问下,不能保证是安全的线程,所以不能接受并发的请求,我们必须对ADD方法的执行进行串行化
*/
static void Main(string[] args)
{
_Products = new List<Product>();
/*创建任务 t1 t1 执行 数据集合添加操作*/
Task t1 = Task.Factory.StartNew(() =>
{
AddProducts();
});
/*创建任务 t2 t2 执行 数据集合添加操作*/
Task t2 = Task.Factory.StartNew(() =>
{
AddProducts();
});
/*创建任务 t3 t3 执行 数据集合添加操作*/
Task t3 = Task.Factory.StartNew(() =>
{
AddProducts();
});
Task.WaitAll(t1, t2, t3);
Console.WriteLine(_Products.Count);
Console.ReadLine();
} /*执行集合数据添加操作*/
static void AddProducts()
{
Parallel.For(0, 1000, (i) =>
{
Product product = new Product();
product.Name = "name" + i;
product.Category = "Category" + i;
product.SellPrice = i;
_Products.Add(product);
}); }
} class Product
{
public string Name { get; set; }
public string Category { get; set; }
public int SellPrice { get; set; }
}

本例中,开辟了三个线程,通过循环向集合中添加数据,每个线程执行1000次(三个线程之间的操作是同时进行的,也是并行的),那么,理论上结果应该是3000。

上文中我们讲到: C#命名空间:System.Collenctions和System.Collenctions.Generic 下的列表,数组,集合并不能保证线程安全,并不能防止并发的发生。

本例运行的结果也证明了上述结论的正确性,其结果如下:

由此可见:C#命名空间:System.Collenctions和System.Collenctions.Generic 下的列表,数组,集合确实不能保证线程安全,确实不能预防并发。那么我们应当怎么解决上述问题呢?

还好,自C#2.0以来,LOCK是一直存在的。使用LOCK(互斥锁)是可以做到防止并发的,示例代码如下:

 class Program
{
private static object o = new object();
private static List<Product> _Products { get; set; }
/* coder:天才卧龙
* 代码中 创建三个并发线程 来操作_Products 集合
* System.Collections.Generic.List 这个列表在多个线程访问下,不能保证是安全的线程,所以不能接受并发的请求,我们必须对ADD方法的执行进行串行化
*/
static void Main(string[] args)
{
_Products = new List<Product>();
/*创建任务 t1 t1 执行 数据集合添加操作*/
Task t1 = Task.Factory.StartNew(() =>
{
AddProducts();
});
/*创建任务 t2 t2 执行 数据集合添加操作*/
Task t2 = Task.Factory.StartNew(() =>
{
AddProducts();
});
/*创建任务 t3 t3 执行 数据集合添加操作*/
Task t3 = Task.Factory.StartNew(() =>
{
AddProducts();
});
Task.WaitAll(t1, t2, t3);
Console.WriteLine(_Products.Count);
Console.ReadLine();
} /*执行集合数据添加操作*/
static void AddProducts()
{
Parallel.For(0, 1000, (i) =>
{
lock (o)
{ Product product = new Product();
product.Name = "name" + i;
product.Category = "Category" + i;
product.SellPrice = i;
_Products.Add(product);
}
});
}
} class Product
{
public string Name { get; set; }
public string Category { get; set; }
public int SellPrice { get; set; }
}

引入了Lock,运行结果也正常了,如下:

但是锁的引入,带来了一定的开销和性能的损耗,并降低了程序的扩展性,而且还会有死锁的发生(虽说概率不大,但也不能不防啊),因此:使用LOCK进行并发编程显然不太适用。

还好,微软一直在更新自己的东西:

.NET Framework 4提供了新的线程安全和扩展的并发集合,它们能够解决潜在的死锁问题和竞争条件问题,因此在很多复杂的情形下它们能够使得并行代码更容易编写,这些集合尽可能减少使用锁的次数,从而使得在大部分情形下能够优化为最佳性能,不会产生不必要的同步开销。

需要注意的是:在串行代码中使用并发集合是没有意义的,因为它们会增加无谓的开销。

在.NET Framework4.0以后的版本中提供了命名空间:System.Collections.Concurrent 来解决线程安全问题,通过这个命名空间,能访问以下为并发做好了准备的集合。

   1.BlockingCollection 与经典的阻塞队列数据结构类似,能够适用于多个任务添加和删除数据,提供阻塞和限界能力。

   2.ConcurrentBag 提供对象的线程安全的无序集合

   3.ConcurrentDictionary  提供可有多个线程同时访问的键值对的线程安全集合

   4.ConcurrentQueue   提供线程安全的先进先出集合

   5.ConcurrentStack   提供线程安全的后进先出集合

这些集合通过使用比较并交换和内存屏障等技术,避免使用典型的互斥重量级的锁,从而保证线程安全和性能。

   ConcurrentQueue 

ConcurrentQueue 是完全无锁的,能够支持并发的添加元素,先进先出。下面贴代码,详解见注释:

class Program
{
private static object o = new object();
/*定义 Queue*/
private static Queue<Product> _Products { get; set; }
private static ConcurrentQueue<Product> _ConcurrenProducts { get; set; }
/* coder:天才卧龙
* 代码中 创建三个并发线程 来操作_Products 和 _ConcurrenProducts 集合,每次添加 10000 条数据 查看 一般队列Queue 和 多线程安全下的队列ConcurrentQueue 执行情况
*/
static void Main(string[] args)
{
Thread.Sleep(1000);
_Products = new Queue<Product>();
Stopwatch swTask = new Stopwatch();//用于统计时间消耗的
swTask.Start(); /*创建任务 t1 t1 执行 数据集合添加操作*/
Task t1 = Task.Factory.StartNew(() =>
{
AddProducts();
});
/*创建任务 t2 t2 执行 数据集合添加操作*/
Task t2 = Task.Factory.StartNew(() =>
{
AddProducts();
});
/*创建任务 t3 t3 执行 数据集合添加操作*/
Task t3 = Task.Factory.StartNew(() =>
{
AddProducts();
}); Task.WaitAll(t1, t2, t3);
swTask.Stop();
Console.WriteLine("List<Product> 当前数据量为:" + _Products.Count);
Console.WriteLine("List<Product> 执行时间为:" + swTask.ElapsedMilliseconds); Thread.Sleep(1000);
_ConcurrenProducts = new ConcurrentQueue<Product>();
Stopwatch swTask1 = new Stopwatch();
swTask1.Start(); /*创建任务 tk1 tk1 执行 数据集合添加操作*/
Task tk1 = Task.Factory.StartNew(() =>
{
AddConcurrenProducts();
});
/*创建任务 tk2 tk2 执行 数据集合添加操作*/
Task tk2 = Task.Factory.StartNew(() =>
{
AddConcurrenProducts();
});
/*创建任务 tk3 tk3 执行 数据集合添加操作*/
Task tk3 = Task.Factory.StartNew(() =>
{
AddConcurrenProducts();
}); Task.WaitAll(tk1, tk2, tk3);
swTask1.Stop();
Console.WriteLine("ConcurrentQueue<Product> 当前数据量为:" + _ConcurrenProducts.Count);
Console.WriteLine("ConcurrentQueue<Product> 执行时间为:" + swTask1.ElapsedMilliseconds);
Console.ReadLine();
} /*执行集合数据添加操作*/ /*执行集合数据添加操作*/
static void AddProducts()
{
Parallel.For(0, 30000, (i) =>
{
Product product = new Product();
product.Name = "name" + i;
product.Category = "Category" + i;
product.SellPrice = i;
lock (o)
{
_Products.Enqueue(product);
}
}); }
/*执行集合数据添加操作*/
static void AddConcurrenProducts()
{
Parallel.For(0, 30000, (i) =>
{
Product product = new Product();
product.Name = "name" + i;
product.Category = "Category" + i;
product.SellPrice = i;
_ConcurrenProducts.Enqueue(product);
}); }
} class Product
{
public string Name { get; set; }
public string Category { get; set; }
public int SellPrice { get; set; }
}

结果如下:

从执行时间上来看,使用 ConcurrentQueue 相比 LOCK 明显快了很多!

   1.BlockingCollection 与经典的阻塞队列数据结构类似,能够适用于多个任务添加和删除数据,提供阻塞和限界能力。

   2.ConcurrentBag 提供对象的线程安全的无序集合

   3.ConcurrentDictionary  提供可有多个线程同时访问的键值对的线程安全集合

   4.ConcurrentQueue   提供线程安全的先进先出集合

   5.ConcurrentStack   提供线程安全的后进先出集合

上面的实例可以使用ConcurrentBag吗?当然是可以的啦,因为:ConcurrentBag 和 ConcurrentQueue一样,操作的对象都是集合,只不过方式不同罢了!同理:小虎斑们也可以尝试使用 ConcurrentStack 在这里,我仅仅贴上使用ConcurrentBag的代码,如下:

 class Program
{
private static object o = new object();
/*定义 Queue*/
private static Queue<Product> _Products { get; set; }
private static ConcurrentBag<Product> _ConcurrenProducts { get; set; }
/* coder:天才卧龙
* 代码中 创建三个并发线程 来操作_Products 和 _ConcurrenProducts 集合,每次添加 10000 条数据 查看 一般队列Queue 和 多线程安全下的队列ConcurrentQueue 执行情况
*/
static void Main(string[] args)
{
Thread.Sleep(1000);
_Products = new Queue<Product>();
Stopwatch swTask = new Stopwatch();//用于统计时间消耗的
swTask.Start(); /*创建任务 t1 t1 执行 数据集合添加操作*/
Task t1 = Task.Factory.StartNew(() =>
{
AddProducts();
});
/*创建任务 t2 t2 执行 数据集合添加操作*/
Task t2 = Task.Factory.StartNew(() =>
{
AddProducts();
});
/*创建任务 t3 t3 执行 数据集合添加操作*/
Task t3 = Task.Factory.StartNew(() =>
{
AddProducts();
}); Task.WaitAll(t1, t2, t3);
swTask.Stop();
Console.WriteLine("List<Product> 当前数据量为:" + _Products.Count);
Console.WriteLine("List<Product> 执行时间为:" + swTask.ElapsedMilliseconds); Thread.Sleep(1000);
_ConcurrenProducts = new ConcurrentBag<Product>();
Stopwatch swTask1 = new Stopwatch();
swTask1.Start(); /*创建任务 tk1 tk1 执行 数据集合添加操作*/
Task tk1 = Task.Factory.StartNew(() =>
{
AddConcurrenProducts();
});
/*创建任务 tk2 tk2 执行 数据集合添加操作*/
Task tk2 = Task.Factory.StartNew(() =>
{
AddConcurrenProducts();
});
/*创建任务 tk3 tk3 执行 数据集合添加操作*/
Task tk3 = Task.Factory.StartNew(() =>
{
AddConcurrenProducts();
}); Task.WaitAll(tk1, tk2, tk3);
swTask1.Stop();
Console.WriteLine("ConcurrentQueue<Product> 当前数据量为:" + _ConcurrenProducts.Count);
Console.WriteLine("ConcurrentBag<Product> 执行时间为:" + swTask1.ElapsedMilliseconds);
Console.ReadLine();
} /*执行集合数据添加操作*/ /*执行集合数据添加操作*/
static void AddProducts()
{
Parallel.For(0, 30000, (i) =>
{
Product product = new Product();
product.Name = "name" + i;
product.Category = "Category" + i;
product.SellPrice = i;
lock (o)
{
_Products.Enqueue(product);
}
}); }
/*执行集合数据添加操作*/
static void AddConcurrenProducts()
{
Parallel.For(0, 30000, (i) =>
{
Product product = new Product();
product.Name = "name" + i;
product.Category = "Category" + i;
product.SellPrice = i;
_ConcurrenProducts.Add(product);
}); }
} class Product
{
public string Name { get; set; }
public string Category { get; set; }
public int SellPrice { get; set; }
}

执行结果如下:

对于并发下的其他集合,我这边就不做代码案列了!如有疑问,欢迎指正!

原文链接: http://www.cnblogs.com/chenwolong/p/LoveFuTing.html

C# 集合-并发处理-锁OR线程 (转载)的更多相关文章

  1. C# 集合-并发处理-锁OR线程

    每次写博客,第一句话都是这样的:程序员很苦逼,除了会写程序,还得会写博客!当然,希望将来的一天,某位老板看到此博客,给你的程序员职工加点薪资吧!因为程序员的世界除了苦逼就是沉默.我眼中的程序员大多都不 ...

  2. C#并发处理-锁OR线程安全?

    每次写博客,第一句话都是这样的:程序员很苦逼,除了会写程序,还得会写博客! 当然,题外话说多了,咱进入正题! 背景 基于任务的程序设计.命令式数据并行和任务并行都要求能够支持并发更新的数组.列表和集合 ...

  3. C#多线程实践——锁和线程安全

    锁实现互斥的访问,用于确保在同一时刻只有一个线程可以进入特殊的代码片段,考虑下面的类: class ThreadUnsafe { static int val1, val2; static void ...

  4. “全栈2019”Java多线程第三十一章:中断正在等待显式锁的线程

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...

  5. python网络编程--线程(锁,GIL锁,守护线程)

    1.线程 1.进程与线程 进程有很多优点,它提供了多道编程,让我们感觉我们每个人都拥有自己的CPU和其他资源,可以提高计算机的利用率.很多人就不理解了,既然进程这么优秀,为什么还要线程呢?其实,仔细观 ...

  6. Java并发编程:Java中的锁和线程同步机制

    锁的基础知识 锁的类型 锁从宏观上分类,只分为两种:悲观锁与乐观锁. 乐观锁 乐观锁是一种乐观思想,即认为读多写少,遇到并发写的可能性低,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新 ...

  7. Java并发处理锁 Lock

    在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问.本文我们继续来探讨这个问题,从Java 5之后,在 java.util.concurrent.locks 包下提供了另外一 ...

  8. C#多线程实践-锁和线程安全

    锁实现互斥的访问,用于确保在同一时刻只有一个线程可以进入特殊的代码片段,考虑下面的类: class ThreadUnsafe { static int val1, val2; static void ...

  9. Lock锁_线程_线程域

    using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using Sy ...

随机推荐

  1. [LeetCode] 415. Add Strings_Easy tag: String

    Given two non-negative integers num1 and num2 represented as string, return the sum of num1 and num2 ...

  2. postman返回参数的截取

    同事在使用postman接口测试的时候,遇到这么一个问题,在一个参数里面,返回了一个类似数组的参数,如下: 然后现在需要把数组里面的两个参数分别保存到环境变量里面: 个人的想法是通过截取的方式进行数组 ...

  3. android studio 3.0 安装配置

    1.  安装jdk1.8 2.复制android sdk  设置代理  mirrors.neusoft.edu.cn  端口 80 http代理  更新sdk  安装  android support ...

  4. bootstrap modal 垂直居中对齐

    bootstrap modal 垂直居中对齐   文章参考 http://www.bubuko.com/infodetail-666582.html http://v3.bootcss.com/Jav ...

  5. ARM中的汇编指令

    Arm指令,32位的指令集,一共有16条的基本指令,每条指令都可以按条件执行, 指令都是32bit的,高四位是条件码[31:28], Thumb指令,16位的指令集,执行效率比arm指令集要低,但是节 ...

  6. DOS操作系统的历史

    昨日(7月27日),微软公司的DOS操作系统迎来了30岁生日. DOS是历史上一个划时代的产品,标识着PC(个人电脑)的崛起和普及,对计算机行业影响深远. 只有了解DOS的历史,才能理解今天的计算机工 ...

  7. 微信分享缩略图,如何增加微信朋友圈分享链接的小图片? facebook、google+、twitter等分享的标签

    微信分享缩略图 如何增加微信朋友圈分享链接的小图片?在网页的头部<head>标签内加上以下代码,图片路径自行修改.<head><div id='wx_pic' style ...

  8. troubleshooting-执行导数shell脚本抛异常error=2, No such file or directory

    Cannot run program "order_log.sh" (in directory "/data/yarn/nm/usercache/chenweidong/ ...

  9. Bof基础实践

    Bof基础 Bof原理 Linux下进程地址空间的布局 典型的堆栈结构 上图中可以看到栈中有return address还有局部变量,也就是函数的参数,bof攻击是利用上参数的溢出将返回地址retur ...

  10. tf.multiply()和tf.matmul()区别

    (1)tf.multiply是点乘,即Returns x * y element-wise. (2)tf.matmul是矩阵乘法,即Multiplies matrix a by matrix b, p ...