有这样一组搜索结果数据:

租户,平台, 登录用户, 搜索关键词, 搜索的商品结果List

{"tenantcode":"0000001", "platform":"IOS","loginName":"13111111111", "keywords":"手机","goodsList":[{"skuCode":"sku00001","skuName":"skuname1","spuCode":"spuCode1","spuName":"spuName1"},{"skuCode":"sku00002","skuName":"skuname2","spuCode":"spuCode2","spuName":"spuName2"}]}
{"tenantcode":"0000001", "platform":"IOS","loginName":"13111111111", "keywords":"外国手机","goodsList":[]}
{"tenantcode":"0000001", "platform":"IOS","loginName":"13111111112", "keywords":"手机壳","goodsList":[{"skuCode":"sku00001","skuName":"skuname1","spuCode":"spuCode1","spuName":"spuName1"},{"skuCode":"sku00003","skuName":"skuname2","spuCode":"spuCode2","spuName":"spuName2"}]}

现在需要统计每个商品被哪些关键词搜索到,最终结果如下:

这里最关键的是sku对应到命中的关键词:

操作步骤1: 

将给出的数据goodslist一列转为多行结构如下,重点用到了lateral view explode来解析。

    select tenantcode,
nvl(platform,0) as platform,
keywords,
'day' as dim_code,
'' as dim_value,
gl['skucode'] as skucode,
gl['skuname'] as skuname,
gl['spucode'] as spucode,
gl['spuname'] as spuname
from dw_mdl.m_search_result2
lateral view explode(goodsList) gl as gl
where dt = '';

显示如下:

操作步骤2:

根据商品,汇总关键词列,这里考虑到平台,时间维度等。

grouping sets 分组汇总数据

collect_set 多行合并并且去重

collect_list 多行合并不去重

with tmp_a as (
select tenantcode,
nvl(platform,0) as platform,
keywords,
'day' as dim_code,
'' as dim_value,
gl['skucode'] as skucode,
gl['skuname'] as skuname,
gl['spucode'] as spucode,
gl['spuname'] as spuname
from dw_mdl.m_search_result2
lateral view explode(goodsList) gl as gl
where dt = ''
) select tenantcode,
nvl(platform,'all') as platform,
skucode,
dim_code,
dim_value,
count(skuname) as search_times,
collect_set(keywords) as keywords
from tmp_a
group by tenantcode,platform,skucode,dim_code,dim_value
grouping sets((tenantcode,platform,skucode,dim_code,dim_value),(tenantcode,skucode,dim_code,dim_value))

操作步骤3:

数组转字符串: concat_ws('分隔符',数组)

with tmp_a as (
select tenantcode,
nvl(platform,0) as platform,
keywords,
'day' as dim_code,
'' as dim_value,
gl['skucode'] as skucode,
gl['skuname'] as skuname,
gl['spucode'] as spucode,
gl['spuname'] as spuname
from dw_mdl.m_search_result2
lateral view explode(goodsList) gl as gl
where dt = ''
),
tmp_b as (
select tenantcode,
nvl(platform,'all') as platform,
skucode,
dim_code,
dim_value,
count(skuname) as search_times,
concat_ws(',',collect_set(keywords)) as keywords
from tmp_a
group by tenantcode,platform,skucode,dim_code,dim_value
grouping sets((tenantcode,platform,skucode,dim_code,dim_value),(tenantcode,skucode,dim_code,dim_value))
)
select * from tmp_b;

是不是太简单了。

hive之案例分析(grouping sets,lateral view explode, concat_ws)的更多相关文章

  1. Hive lateral view explode

    select 'hello', x from dual lateral view explode(array(1,2,3,4,5)) vt as x 结果是: hello   1 hello   2 ...

  2. hive lateral view 与 explode详解

    ref:https://blog.csdn.net/bitcarmanlee/article/details/51926530 1.explode hive wiki对于expolde的解释如下: e ...

  3. hive splict, explode, lateral view, concat_ws

    hive> create table arrays (x array<string>) > row format delimited fields terminated by ...

  4. hive 使用笔记(table format;lateral view)

    1. create table 创建一张目标表,指定分隔符和存储格式: create table tmp_2 (resource_id bigint ,v int) ROW FORMAT DELIMI ...

  5. hive 使用笔记(table format;lateral view横表转纵表)

    1. create table 创建一张目标表,指定分隔符和存储格式: create table tmp_2 (resource_id bigint ,v int) ROW FORMAT DELIMI ...

  6. hive中的lateral view 与 explode函数的使用

    hive中的lateral view 与 explode函数的使用 背景介绍: explode与lateral view在关系型数据库中本身是不该出现的. 因为他的出现本身就是在操作不满足第一范式的数 ...

  7. 【Hive学习之六】Hive Lateral View &视图&索引

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 apache-hive-3.1.1 ...

  8. hive grouping sets 实现原理

    先下结论: 看了hive 1.1.0 grouping sets 实现(从源码及执行计划都可以看出与kylin实现不一样),(前提是可累加,如sum函数)他并没有像kylin一样先按照group by ...

  9. 【hive】lateral view的使用

    当使用UDTF函数的时候,hive只允许对拆分字段进行访问的 例如: select id,explode(arry1) from table; —错误 会报错FAILED: SemanticExcep ...

随机推荐

  1. springboot 利用configureMessageConverters add FastJsonHttpMessageConverter 实现返回JSON值 null to ""

    /** * 文件名:@WebConfiguration.java <br/> * @author tomas <br/> import com.alibaba.fastjson ...

  2. 独立的android开发者开发app如何盈利?

    对立android开发者开发app如何盈利?android开发日益兴隆,随着google的大力推广和技术及其android培训的支持,android个人开发者或者android独立开发者也都匆匆欲动加 ...

  3. ASP.NET CORE中控制器内return HTML 内容自动编码问题

    以前ASP.NET MVC中在控制器中直接 return Content( "<h1>测试测试</h1>"); 在前台VIEW上就显示加粗的文字了,但是在A ...

  4. 使用Vuex打开log功能

    vuex是一个比较好用的数据流管理库,可以用统一的流程来处理状态数据,但是,也正是因为这些流程,我们需要打一些log来观察流程是否会出现问题,具体方法如下: import Vue from 'vue' ...

  5. Go1.5正式版程序性能分析小积累,实验环境windows64

    方法一: 内存分配器跟踪:GODEBUG=allocfreetrace=1 调度器追踪 调度器追踪能够提供对 goroutine 调度的动态行为的内视,而且同意调试负载平衡和可扩展性问题.要启用调度器 ...

  6. Android API Guides---Drag and Drop

    Drag and Drop 随着Android拖/放框架,能够同意用户将数据从一个视图使用图形拖动移动到还有一个查看当前布局和下降的手势. 该框架包含一个拖放事件类,拖累听众和辅助方法和类. 尽管该框 ...

  7. angular学习笔记(三十)-指令(4)-transclude

    本篇主要介绍指令的transclude属性: transclude的值有三个: 1.transclude:false(默认值) 不启用transclude功能. 2.transclude:true 启 ...

  8. Python Pycharm连接Ubantu Python环境

    由于我习惯在window下开发,但是代码环境布局在Ubantu.使用Python,为了方便程序的调试,尝试在Windows下的Pycharm远程连接到Ubantu虚拟机下的Python环境. 1.准备 ...

  9. PBR Metallic/Roughness工作流中Albedo与F0的计算方法

    首先简单回顾一下典型的纯金属与绝缘体的PBR属性: 纯金属: Albedo(diff): 0 F0(spec): >0.3 (or 0.5, epic/allegorithmic etc.) M ...

  10. Centos crontab定时任务

    CRONTAB是一个用于设置周期性被执行的任务的工具,有了它,我们就可以从定时工作中解放出来. 一 : 检查CRONTAB服务 1. 检查CRONTAB工具是否已经在主机上安装 : crontab - ...