SparkSQL---实战应用

数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase

相关数据文件 :

users.dat ---UserID::Gender::Age::Occupation::Zip-code

movies.dat --- MovieID::Title::Genres

ratings.dat ---UserID::MovieID::Rating::Timestamp

SogouQ.mini

完成以下业务需求:

1. 年龄段在“18-24”的男性年轻人,最喜欢看哪10部

2.得分最高的10部电影;看过电影最多的前10个人;女性看多最多的10部电影;男性看过最多 的10部电影

3.利用数据集SogouQ2012.mini.tar.gz 将数据按照访问次数进行排序,求访问量前10的网站

代码如下:

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Dataset object hw_SparkSql {
case class User(uid: String, xb: String,age:Int,V4:String,V5:String)
case class Movie(mid:String,name:String,t:String)
case class Rating(uid: String, mid: String,V3:Double,V4:String)
case class Brower(V1: String, V2: String,V3:String,V4:String,V5:String,V6:String) def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("ReadJSON").setMaster("local").set("spark.executor.memory","50g").set("spark.driver.maxResultSize","50g")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)

  //隐式转换
import sqlContext.implicits._
val UserInfo = sc.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\data\\data\\users.dat").map(_.split("::")).map(p => User(p(0), p(1),p(2).trim().toInt,p(3),p(4))).toDF()
UserInfo.registerTempTable("User")
val MovieInfo = sc.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\data\\data\\movies.dat").map(_.split("::")).map(p => Movie(p(0),p(1),p(2))).toDF()
MovieInfo.registerTempTable("Movie")
val RatingsInfo = sc.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\data\\data\\ratings.dat").map(_.split("::")).map(p => Rating(p(0), p(1),p(2).toDouble,p(3))).toDF()
RatingsInfo.registerTempTable("Rating")
val BrowerInfo = sc.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\SogouQ2012.mini\\SogouQ.mini").map(_.split("\t")).map(p =>Brower(p(0), p(1),p(2),p(3),p(4),p(5))).toDF()
BrowerInfo.registerTempTable("Brower") //年龄段在“18-24”的男性年轻人,最喜欢看哪10部
val top10_M_18_24 = sqlContext.sql("select x.n as name,count(*) as count from ( select distinct Rating.mid as m, Rating.uid as u, Movie.name as n FROM Rating,User,Movie WHERE User.age>=18 and User.age<=24 and User.xb=\"M\" and User.uid=Rating.uid and Movie.mid=Rating.mid)as x group by x.n order by count desc ")
top10_M_18_24.show(10) //看过电影最多的前10个人
val top10_pepole= sqlContext.sql("select uid,count(uid)as count from Rating group by uid order by count desc");
top10_pepole.show(10); //得分最高的10部电影
val top10M_score=sqlContext.sql("select mid,(sum(V3)/count(V3)) as av from Rating group by mid order by av desc")
top10M_score.show(10) //女性看的最多的10部电影
val top10_Female = sqlContext.sql("select x.n,count(*) as c from ( select distinct Rating.mid as m, Rating.uid as u, Movie.name as n FROM Rating,User,Movie WHERE User.xb=\"F\" and User.uid=Rating.uid and Movie.mid=Rating.mid)as x group by x.n order by c desc ")
top10_Female.show(10) //男性看的最多的10部电影
val top10_Male = sqlContext.sql("select x.n,count(*) as c from ( select distinct Rating.mid as m, Rating.uid as u, Movie.name as n FROM Rating,User,Movie WHERE User.xb=\"M\" and User.uid=Rating.uid and Movie.mid=Rating.mid)as x group by x.n order by c desc ")
top10_Male.show(10) //访问量前10的网站
val Top10_brower = sqlContext.sql("select V6 as name,count(*) as count from Brower group by V6 order by count desc ")
Top10_brower.show(10)
} }

  

SparkSQL---实战应用的更多相关文章

  1. sparkSQL实战详解

    摘要   如果要想真正的掌握sparkSQL编程,首先要对sparkSQL的整体框架以及sparkSQL到底能帮助我们解决什么问题有一个整体的认识,然后就是对各个层级关系有一个清晰的认识后,才能真正的 ...

  2. Spark系列-SparkSQL实战

    Spark系列-初体验(数据准备篇) Spark系列-核心概念 Spark系列-SparkSQL 之前系统的计算大部分都是基于Kettle + Hive的方式,但是因为最近数据暴涨,很多Job的执行时 ...

  3. java 与大数据学习较好的网站

    C# C#中 Thread,Task,Async/Await,IAsyncResult 的那些事儿!https://www.cnblogs.com/doforfuture/p/6293926.html ...

  4. Spark Dataset DataFrame 操作

    Spark Dataset DataFrame 操作 相关博文参考 sparksql中dataframe的用法 一.Spark2 Dataset DataFrame空值null,NaN判断和处理 1. ...

  5. Spark入门实战系列--6.SparkSQL(上)--SparkSQL简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .SparkSQL的发展历程 1.1 Hive and Shark SparkSQL的前身是 ...

  6. Spark入门实战系列--6.SparkSQL(中)--深入了解SparkSQL运行计划及调优

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.1  运行环境说明 1.1.1 硬软件环境 线程,主频2.2G,10G内存 l  虚拟软 ...

  7. Spark入门实战系列--6.SparkSQL(下)--Spark实战应用

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .运行环境说明 1.1 硬软件环境 线程,主频2.2G,10G内存 l  虚拟软件:VMwa ...

  8. SparkSQL大数据实战:揭开Join的神秘面纱

    本文来自 网易云社区 . Join操作是数据库和大数据计算中的高级特性,大多数场景都需要进行复杂的Join操作,本文从原理层面介绍了SparkSQL支持的常见Join算法及其适用场景. Join背景介 ...

  9. Spark大型电商项目实战-及其改良(3) 分析sparkSQL语句的性能影响

    之前的运行数据被清除了,只能再运行一次,对比一下sparkSQL语句的影响 纯SQL的时间 对应时间表 th:first-child,.table-bordered tbody:first-child ...

  10. Spark大型电商项目实战-及其改良(1) 比对sparkSQL和纯RDD实现的结果

    代码存在码云:https://coding.net/u/funcfans/p/sparkProject/git 代码主要学习https://blog.csdn.net/u012318074/artic ...

随机推荐

  1. C#文件下载(实现断点续传)

    public class WebDown { /// 下载文件方法 /// 文件保存路径和文件名 /// 返回服务器文件名 public static bool DeownloadFile(strin ...

  2. MSSQL2005:“超时时间已到。在操作完成之前超时时间已过或服务器未响应”

    1.今天在整合项目中有这样一个需求,就是要改变以存在表字段的文本的大小,如把char(15)改成varchar(50). 2.此时以存在表已有1885742条数据,在直接下面进行调用 ALTER TA ...

  3. js前台取用后台传递过来的map集合方式

    在处理有些特殊需求的时候,我们需要在前台页面的js中获取后台传递过来的map集合类型的参数,并且进行调用,代码如下: 在后台我们拼装出如下的集合: Map<String,Grade> gr ...

  4. 微信小程序如何获取屏幕宽度

    微信小程序如何获取屏幕宽度 方法1: imageLoad: function () { this.setData({ imageWidth: wx.getSystemInfoSync().window ...

  5. centos 7 执行 groupinstall报错

    报错显示Error: Package: systemtap-devel-3.10-10.el7.armv7hl (base) Requires: kernel-devel 解决方案 wget http ...

  6. windows库的创建和使用:静态库+动态库

    windows库的创建和使用:静态库+动态库   一.静态库的创建和使用 1. 静态库创建 (1)首先创建projecttest,測试代码例如以下: 1) test.h void test_print ...

  7. 设计模式-装饰模式(Decorator Pattern)

    装饰模式(Decorator Pattern):动态地给一个对象添加一些额外的职责,就增加功能来说,装饰模式比生成子类更为灵活

  8. 在vultr中安装coreos

    1.coreos必须使用key文件. 2.生成ssh key -C "your_email@mail.com" 3.拷贝ssh公钥文件内容.默认为id_rsa.pub 4.编辑vu ...

  9. 基于PHPExcel常用方法总结(phpexcel类库实例)

    分享下对PHPExcel的常用方法进行详细的总结与分析. 对phpexcel类库不熟悉的朋友,可以阅读下<phpexcel中文帮助手册>中的内容,具体实例大家可以phpexcel快速开发指 ...

  10. Atitit 项目源码的架构,框架,配置与环境说明模板 规范 标准化

    Atitit 项目源码的架构,框架,配置与环境说明模板  规范 标准化 版本1.0 作者 艾龙 attilax 1. 概述:核心业务: 1 1.1. 功能文档路径 /palmWin/src/docum ...