题意

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.

set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

这道题的题意就是说,使用LRU Cache,就是将最新使用的放置在前面,以便下次取的时候方便,其余则依次往下移动;

思路

其实我也是根据别人的想法做的,用链表加入值,因为链表对于往前往后添加或者删除都非常方便,但是有个麻烦的地方在于,我并不知知道他的位置在哪里,只能循环去找,因此我使用了一个哈希数组进行存储她的key和下标;

实现

我的实现(比较白痴)

struct Node {
int key;
int value;
Node(int _k, int _v) {key = _k; value = _v;}
}; class LRUCache{
public:
unordered_map<int, int> maps;
list<Node> lists;
int size;
LRUCache(int capacity) {
size = capacity;
} /**
* 获取值,同时获取也算是一种访问
*
* @param key <#key description#>
*
* @return <#return value description#>
*/
int get(int key) {
if (maps.size() == 0) {
return -1;
}
if (maps.find(key) != maps.end()) {
auto key_value = maps.find(key);
int j = 0;
for (auto itr = lists.begin(); itr != lists.end() && j < lists.size(); itr++, j++) {
if (j == key_value->second) {
int value = (*itr).value;
lists.push_front(Node((*itr).key, (*itr).value));
// 更新lists和maps
lists.erase(itr); // 将要更新的迭代器之前的下标都要加上1,其余的位置不需要改变
for (auto mitr = maps.begin(); mitr != maps.end(); mitr++) {
if (mitr->second < key_value->second){
mitr->second++;
}
} // 更新全部位置
key_value->second = 0; return value;
}
}
}
return -1;
} /**
* 添加新值,不过需要注意的是当内存不够的情况下,需要删除掉最不经常使用的
*
* @param key <#key description#>
* @param value <#value description#>
*/
void set(int key, int value) {
if (lists.size() == size) {
// 满了先进行删除
list<Node>::iterator lend = --lists.end();
lists.pop_back(); int lkey = lend->key;
maps.erase(maps.find(lkey)); lists.push_front(Node(key, value)); for (auto mitr = maps.begin(); mitr != maps.end(); mitr++) {
mitr->second++;
} maps.insert(make_pair(key, 0));
}
else {
// 存在的话
if (maps.find(key) != maps.end()) {
auto key_value = maps.find(key);
maps[key] = 0;
for (auto mitr = maps.begin(); mitr != maps.end(); mitr++) {
if (mitr->second < key_value->second){
mitr->second++;
}
}
// 更新全部位置
key_value->second = 0;
}
else {
lists.push_front(Node(key, value));
for (auto mitr = maps.begin(); mitr != maps.end(); mitr++) {
mitr->second++;
}
maps.insert(make_pair(key, 0));
}
}
}
}; int main(int argc, const char * argv[]) {
// insert code here...
LRUCache cache(5);
cache.set(1, 10);
cache.set(2, 20);
cache.set(3, 30); //cout << "cache..." << cache.get(2) << endl; cache.set(4, 40);
cache.set(5, 50); cache.set(8, 80); //cout << "cache..." << cache.get(1) << endl;
cout << "cache..." << cache.get(5) << endl; return 0;
}

如上面所说,我需要不停的去更新其的位置,这样才能根据正确的位置去获取到具体的结点信息;根据题目的要求,需要控制时间复杂度在1,所以需要需要一个哈希数组去记录其位置;但是我好像并没有做到,依旧使用了一个循环。。。

我的基础上优化

struct node{
int key;
int value;
node(int k, int v):key(k), value(v){}
}; /*
* 注意整体思路是,使用双向list每次set或get一个元素时都把这个元素放到list的头部,无需统计每个元素的操作次数,实际上LRU的意思
* 就是根据元素最后被访问的时间来决定替换哪个,故list中尾部元素即被替换.
* STL技巧:1、使用map的find方法来判断key是否已经存在,返回值和map的end迭代器比较;
2、使用unordered_map,它是hash_map,存取时间都是O(1),用它存储元素的position迭代器,是为了方便splice函数调用
* list.splice(position, list, element_pos)函数作用是把list的element_pos处的元素插入到position位置,本题中
为了移动元素到list头部
*/
class LRUCache{
int size;
list<node> values;
unordered_map<int, list<node>::iterator> positions;
public:
LRUCache(int capacity) {
size = capacity;
} int get(int key) {
if(positions.find(key) != positions.end()){
values.splice(values.begin(), values, positions[key]);
positions[key] = values.begin(); return values.begin()->value;
}
return -1;
} void set(int key, int value) {
if(positions.find(key) != positions.end()){
values.splice(values.begin(), values, positions[key]); //移动被访问元素到头部
values.begin()->value = value;
positions[key] = values.begin(); //更新其位置,注意此处的position只是一个指针,当此key在list中被挤到其他位置后,positions里保存的位置也会跟着变化,因为它仅仅是一个指向该结点的指针
}
else if(values.size()<size){
values.push_front(node(key, value));
positions[key] = values.begin();
}
else{
node last = values.back();
values.pop_back();
positions.erase(last.key); values.push_front(node(key, value));
positions[key] = values.begin();
}
} };

将我的int下标,改成了纪录链表的迭代器,这下使用了splice会很方便,同时控制了时间复杂度。

总结

并没有。

LRU Cache 题解的更多相关文章

  1. LeetCode题解: LRU Cache 缓存设计

    LeetCode题解: LRU Cache 缓存设计 2014年12月10日 08:54:16 邴越 阅读数 1101更多 分类专栏: LeetCode   版权声明:本文为博主原创文章,遵循CC 4 ...

  2. 146. LRU Cache

    题目: Design and implement a data structure for Least Recently Used (LRU) cache. It should support the ...

  3. LeetCode解题报告:LRU Cache

    LRU Cache Design and implement a data structure for Least Recently Used (LRU) cache. It should suppo ...

  4. LRU Cache leetcode java

    题目: Design and implement a data structure for Least Recently Used (LRU) cache. It should support the ...

  5. 【leetcode刷题笔记】LRU Cache

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  6. [LeetCode] LRU Cache 最近最少使用页面置换缓存器

    Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...

  7. 【leetcode】LRU Cache

    题目简述: Design and implement a data structure for Least Recently Used (LRU) cache. It should support t ...

  8. LeetCode:LRU Cache

    题目大意:设计一个用于LRU cache算法的数据结构. 题目链接.关于LRU的基本知识可参考here 分析:为了保持cache的性能,使查找,插入,删除都有较高的性能,我们使用双向链表(std::l ...

  9. LRU Cache实现

    最近在看Leveldb源码,里面用到LRU(Least Recently Used)缓存,所以自己动手来实现一下.LRU Cache通常实现方式为Hash Map + Double Linked Li ...

随机推荐

  1. getByClassName2016/4/21

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  2. Discuz登录慢、退出也慢的原因?

     Discuz登录慢.退出也慢的原因? 2009-02-21 12:50:11 分类: 转载自:http://www.aiseminar.cn/bbs/thread-201-1-1.html 由于服务 ...

  3. 使用JavaCV/OpenCV抓取并存储摄像头图像

    http://blog.csdn.net/ljsspace/article/details/6702178  分类: 图形图像(3)  版权声明:本文为博主原创文章,未经博主允许不得转载. 本程序通过 ...

  4. nested query for "pat2" table

    mysql> select t.appln_id, t.filing_date, t.appln_kind, t.people, GROUP_CONCAT(pu.publn_kind) from ...

  5. Entity Framework 6新功能Logging/Store Procedure

    摘要 在Entity Framework6中有两个新的功能,DB Loggin和Stored Procedure的映射 Entity Framework 6已经从Beta版本来到了RC1版本,我们可以 ...

  6. VNC轻松连接远程Linux桌面

    VNC连接Linux桌面,要想连接Linux远程桌面,按照下面的步骤,非常简单.快速,Linux配置VNC(以RedHat.CentOS.Fedora系列为例). 工具/原料 Linux平台安装VNC ...

  7. android:分享 一个很强大的LOG开关---Log.isLoggable

    标签:android分享 一个很强大的log开 1.API亮点: 此API可以实现不更换APK,在出问题的手机上就直接能抓到有效log,能提升不少工作效率. 2.API介绍 最近在解决短信问题时,看到 ...

  8. oracle有三个默认的用户名和密码,但是都无法登录的解决方法

    system/change_on_install, system/manager是较旧版的预设密码, 在安装较新版时会提示你设定密码, 若没有或忘了设定, 请参考以下重设: sqlplus / as ...

  9. Anroid ListView分组和悬浮Header实现

    Anroid ListView分组和悬浮Header实现 分类: Android2014-01-27 12:26 6585人阅读 评论(13) 收藏 举报 listviewheadersection分 ...

  10. webapp之路--apple私有属性apple-touch-icon

    以前我们用过favicon在浏览器给网站进行身份标识,用法如下: <link href="http://image.feeliu.com/web/favicon.ico" r ...