机器学习实战笔记(Python实现)-03-朴素贝叶斯
---------------------------------------------------------------------------------------
本系列文章为《机器学习实战》学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正。
源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction
---------------------------------------------------------------------------------------
1、算法概述
1.1 朴素贝叶斯
朴素贝叶斯是使用概率论来分类的算法。其中朴素:各特征条件独立;贝叶斯:根据贝叶斯定理。
根据贝叶斯定理,对一个分类问题,给定样本特征x,样本属于类别y的概率是:
-------(1)
在这里,x 是一个特征向量,设 x 维度为 M。因为朴素的假设,即特征条件独立,根据全概率公式展开,上式可以表达为:
这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了。类别 y 的先验概率可以通过训练集算出,同样通过训练集上的统计,可以得出对应每一类上的,条件独立的特征对应的条件概率向量。
1.2 算法特点
优点:在数据较少的情况下仍然有效,可以处理多类别问题。
缺点:对于输入数据的准备方式较为敏感。
适用数据类型:标称型数据。
2、使用Python进行文本分类
要从文本中获取特征,需要先拆分文本。可以把词条想象为单词,也可以使用非单词词条,如URL、IP地址或者任意其他字符串。然后将每一个文本片段表示为一个词条向量,其中值为1表示词条出现在文档中,0表示词条未出现。
2.1 准备数据:从文本中构建词向量
from numpy import * def loadDataSet():
'''
postingList: 进行词条切分后的文档集合
classVec:类别标签
'''
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1代表侮辱性文字,0代表正常言论
return postingList,classVec def createVocabList(dataSet):
vocabSet = set([])#使用set创建不重复词表库
for document in dataSet:
vocabSet = vocabSet | set(document) #创建两个集合的并集
return list(vocabSet) def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)#创建一个所包含元素都为0的向量
#遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else: print("the word: %s is not in my Vocabulary!" % word)
return returnVec
'''
我们将每个词的出现与否作为一个特征,这可以被描述为词集模型(set-of-words model)。
如果一个词在文档中出现不止一次,这可能意味着包含该词是否出现在文档中所不能表达的某种信息,
这种方法被称为词袋模型(bag-of-words model)。
在词袋中,每个单词可以出现多次,而在词集中,每个词只能出现一次。
为适应词袋模型,需要对函数setOfWords2Vec稍加修改,修改后的函数称为bagOfWords2VecMN
'''
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
2.2 训练算法:从词向量计算概率
计算每个类别的条件概率,伪代码:
def trainNB0(trainMatrix,trainCategory):
'''
朴素贝叶斯分类器训练函数(此处仅处理两类分类问题)
trainMatrix:文档矩阵
trainCategory:每篇文档类别标签
'''
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
#初始化所有词出现数为1,并将分母初始化为2,避免某一个概率值为0
p0Num = ones(numWords); p1Num = ones(numWords)#
p0Denom = 2.0; p1Denom = 2.0 #
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
#将结果取自然对数,避免下溢出,即太多很小的数相乘造成的影响
p1Vect = log(p1Num/p1Denom)#change to log()
p0Vect = log(p0Num/p0Denom)#change to log()
return p0Vect,p1Vect,pAbusive
2.3 测试算法
分类函数:
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
'''
分类函数
vec2Classify:要分类的向量
p0Vec, p1Vec, pClass1:分别对应trainNB0计算得到的3个概率
'''
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
测试:
def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
#训练模型,注意此处使用array
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
3、实例:使用朴素贝叶斯过滤垃圾邮件
一般流程:
3.1 切分文本
将长字符串切分成词表,包括将大写字符转换成小写,并过滤字符长度小于3的字符。
def textParse(bigString):#
'''
文本切分
输入文本字符串,输出词表
'''
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]
3.2 使用朴素贝叶斯进行垃圾邮件分类
def spamTest():
'''
垃圾邮件测试函数
'''
docList=[]; classList = []; fullText =[]
for i in range(1,26):
#读取垃圾邮件
wordList = textParse(open('email/spam/%d.txt' % i,'r',encoding= 'utf-8').read())
docList.append(wordList)
fullText.extend(wordList)
#设置垃圾邮件类标签为1
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i,'r',encoding= 'utf-8').read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#生成次表库
trainingSet = list(range(50))
testSet=[] #
#随机选10组做测试集
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#生成训练矩阵及标签
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
#测试并计算错误率
for docIndex in testSet:
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print("classification error",docList[docIndex])
print('the error rate is: ',float(errorCount)/len(testSet))
#return vocabList,fullText
4、实例:使用朴素贝叶斯分类器从个人广告中获取区域倾向
一般流程:
在这个中,我们将分别从美国的两个城市中选取一些人,通过分析这些人发布的征婚广告信息,来比较这两个城市的人们在广告用词上是否不同 。
4.1 实现代码
'''
函数localWords()与程序清单中的spamTest()函数几乎相同,区别在于这里访问的是
RSS源而不是文件。然后调用函数calcMostFreq()来获得排序最高的30个单词并随后将它们移除
'''
def localWords(feed1,feed0):
import feedparser
docList=[]; classList = []; fullText =[]
minLen = min(len(feed1['entries']),len(feed0['entries']))
for i in range(minLen):
wordList = textParse(feed1['entries'][i]['summary'])
docList.append(wordList)
fullText.extend(wordList)
classList.append(1) #NY is class 1
wordList = textParse(feed0['entries'][i]['summary'])
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
top30Words = calcMostFreq(vocabList,fullText) #remove top 30 words
for pairW in top30Words:
if pairW[0] in vocabList: vocabList.remove(pairW[0])
trainingSet = list(range(2*minLen)); testSet=[] #create test set
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print('the error rate is: ',float(errorCount)/len(testSet))
return vocabList,p0V,p1V def calcMostFreq(vocabList,fullText):
'''
返回前30个高频词
'''
import operator
freqDict = {}
for token in vocabList:
freqDict[token]=fullText.count(token)
sortedFreq = sorted(freqDict.items(), key=operator.itemgetter(1), reverse=True)
return sortedFreq[:30] if __name__== "__main__":
#导入RSS数据源
import operator
ny=feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
sf=feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
localWords(ny,sf)
机器学习实战笔记(Python实现)-03-朴素贝叶斯的更多相关文章
- 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)
第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...
- Python实现nb(朴素贝叶斯)
Python实现nb(朴素贝叶斯) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>ope ...
- 机器学习实战笔记(Python实现)-00-readme
近期学习机器学习,找到一本不错的教材<机器学习实战>.特此做这份学习笔记,以供日后翻阅. 机器学习算法分为有监督学习和无监督学习.这本书前两部分介绍的是有监督学习,第三部分介绍的是无监督学 ...
- Python机器学习(基础篇---监督学习(朴素贝叶斯))
朴素贝叶斯 朴素贝叶斯分类器的构造基础是贝叶斯理论.采用概率模型来表述,定义x=<x1,x2,...,xn>为某一n维特征向量,y∈{c1,c2,...ck}为该特征向量x所有k种可能的类 ...
- Python实现 利用朴素贝叶斯模型(NBC)进行问句意图分类
目录 朴素贝叶斯分类(NBC) 程序简介 分类流程 字典(dict)构造:用于jieba分词和槽值替换 数据集构建 代码分析 另外:点击右下角魔法阵上的[显示目录],可以导航~~ 朴素贝叶斯分类(NB ...
- 机器学习实战笔记(Python实现)-08-线性回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习实战笔记(Python实现)-05-支持向量机(SVM)
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习实战笔记(Python实现)-04-Logistic回归
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
- 机器学习实战笔记(Python实现)-01-K近邻算法(KNN)
--------------------------------------------------------------------------------------- 本系列文章为<机器 ...
随机推荐
- C#中,双屏/两屏/三屏/多屏跳转判断
之前伤脑筋写过一次在Web中,JS,ActiveXObject去读取显示器数量.分辨率去判断单双屏跳转. 那么在客户端中,用C#去读取硬件信息,更方便更容易! 思路参考代码: ) { //此显示器是否 ...
- myeclipse学习总结二(myeclipse安装svn插件)
1.在myeclipse中要安装svn插件,首先是下载svn插件. 下载地址:http://subclipse.tigris.org/servlets/ProjectDocumentList?fold ...
- iOS实现UITableViewDataSource与Controller的分离
写在前面 在之前的项目中好多处用到了tableView,然而之前不懂得将代理方法实现分离,所以每在一处用到tableView就要在controller中写一遍UITableViewDataSource ...
- Spark 运行架构核心总结
摘要: 1.基本术语 2.运行架构 2.1基本架构 2.2运行流程 2.3相关的UML类图 2.4调度模块: 2.4.1作业调度简介 2.4.2任务调度简介 3.运行模式 3.1 standalo ...
- nodejs处理url工具
url模块提供3个方法:parse,format,resolve 1.parse 要先引入url模块 >url.parse('http://www.cnblogs.com/cate/108703 ...
- leetcode--5. Longest Palindromic Substring
题目来自 https://leetcode.com/problems/longest-palindromic-substring/ 题目:Given a string S, find the long ...
- JS处理事件小技巧
今天,就分享一下我自己总结的一些JS的小技巧: ①防止鼠标选中事件 <div class="mask" onselectstart="return false&qu ...
- 读书笔记--SQL必知必会22--高级SQL特性
22.1 约束 约束(constraint),管理如何插入或处理数据库数据的规则. DBMS通过在数据库表上施加约束来实施引用完整性. 大多数约束是在表定义中定义的. 22.1.1 主键 主键,用来保 ...
- Angular2 小贴士-多级注入器
angular2 的依赖注入包含了太多的内容,其中的一个重点就是注入器,而注入器又非常难理解,今天我们不深入介绍注入器的内容,可以参考官方文档,我们今天来说注入器的层级. 也就是组件获取服务的容器会选 ...
- C# 读取app.config配置文件 节点键值,提示 "配置系统未能初始化" 错误的解决方案
新建C#项目,在app.config中添加了appSettings项,运行时出现"配置系统未能初始化"的错误,MSDN里写到,如果配置文件中包含 configSections 元素 ...