---------------------------------------------------------------------------------------

本系列文章为《机器学习实战》学习笔记,内容整理自书本,网络以及自己的理解,如有错误欢迎指正。

源码在Python3.5上测试均通过,代码及数据 --> https://github.com/Wellat/MLaction

---------------------------------------------------------------------------------------

1、算法概述

1.1 朴素贝叶斯

朴素贝叶斯是使用概率论来分类的算法。其中朴素:各特征条件独立;贝叶斯:根据贝叶斯定理。

根据贝叶斯定理,对一个分类问题,给定样本特征x,样本属于类别y的概率是:

 -------(1)

在这里,x 是一个特征向量,设 x 维度为 M。因为朴素的假设,即特征条件独立,根据全概率公式展开,上式可以表达为:

这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了。类别 y 的先验概率可以通过训练集算出,同样通过训练集上的统计,可以得出对应每一类上的,条件独立的特征对应的条件概率向量。

1.2 算法特点

优点:在数据较少的情况下仍然有效,可以处理多类别问题。

缺点:对于输入数据的准备方式较为敏感。

适用数据类型:标称型数据。

2、使用Python进行文本分类

要从文本中获取特征,需要先拆分文本。可以把词条想象为单词,也可以使用非单词词条,如URL、IP地址或者任意其他字符串。然后将每一个文本片段表示为一个词条向量,其中值为1表示词条出现在文档中,0表示词条未出现。

2.1 准备数据:从文本中构建词向量

 from numpy import *

 def loadDataSet():
'''
postingList: 进行词条切分后的文档集合
classVec:类别标签
'''
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1代表侮辱性文字,0代表正常言论
return postingList,classVec def createVocabList(dataSet):
vocabSet = set([])#使用set创建不重复词表库
for document in dataSet:
vocabSet = vocabSet | set(document) #创建两个集合的并集
return list(vocabSet) def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)#创建一个所包含元素都为0的向量
#遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else: print("the word: %s is not in my Vocabulary!" % word)
return returnVec
'''
我们将每个词的出现与否作为一个特征,这可以被描述为词集模型(set-of-words model)。
如果一个词在文档中出现不止一次,这可能意味着包含该词是否出现在文档中所不能表达的某种信息,
这种方法被称为词袋模型(bag-of-words model)。
在词袋中,每个单词可以出现多次,而在词集中,每个词只能出现一次。
为适应词袋模型,需要对函数setOfWords2Vec稍加修改,修改后的函数称为bagOfWords2VecMN
'''
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec

2.2 训练算法:从词向量计算概率

计算每个类别的条件概率,伪代码:

 def trainNB0(trainMatrix,trainCategory):
'''
朴素贝叶斯分类器训练函数(此处仅处理两类分类问题)
trainMatrix:文档矩阵
trainCategory:每篇文档类别标签
'''
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
#初始化所有词出现数为1,并将分母初始化为2,避免某一个概率值为0
p0Num = ones(numWords); p1Num = ones(numWords)#
p0Denom = 2.0; p1Denom = 2.0 #
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
#将结果取自然对数,避免下溢出,即太多很小的数相乘造成的影响
p1Vect = log(p1Num/p1Denom)#change to log()
p0Vect = log(p0Num/p0Denom)#change to log()
return p0Vect,p1Vect,pAbusive

2.3 测试算法

分类函数:

 def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
'''
分类函数
vec2Classify:要分类的向量
p0Vec, p1Vec, pClass1:分别对应trainNB0计算得到的3个概率
'''
p1 = sum(vec2Classify * p1Vec) + log(pClass1)
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0

测试:

 def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
#训练模型,注意此处使用array
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))

3、实例:使用朴素贝叶斯过滤垃圾邮件

一般流程:

3.1 切分文本

将长字符串切分成词表,包括将大写字符转换成小写,并过滤字符长度小于3的字符。

 def textParse(bigString):#
'''
文本切分
输入文本字符串,输出词表
'''
import re
listOfTokens = re.split(r'\W*', bigString)
return [tok.lower() for tok in listOfTokens if len(tok) > 2]

3.2 使用朴素贝叶斯进行垃圾邮件分类

 def spamTest():
'''
垃圾邮件测试函数
'''
docList=[]; classList = []; fullText =[]
for i in range(1,26):
#读取垃圾邮件
wordList = textParse(open('email/spam/%d.txt' % i,'r',encoding= 'utf-8').read())
docList.append(wordList)
fullText.extend(wordList)
#设置垃圾邮件类标签为1
classList.append(1)
wordList = textParse(open('email/ham/%d.txt' % i,'r',encoding= 'utf-8').read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#生成次表库
trainingSet = list(range(50))
testSet=[] #
#随机选10组做测试集
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#生成训练矩阵及标签
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
#测试并计算错误率
for docIndex in testSet:
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print("classification error",docList[docIndex])
print('the error rate is: ',float(errorCount)/len(testSet))
#return vocabList,fullText

4、实例:使用朴素贝叶斯分类器从个人广告中获取区域倾向

一般流程:

在这个中,我们将分别从美国的两个城市中选取一些人,通过分析这些人发布的征婚广告信息,来比较这两个城市的人们在广告用词上是否不同 。

4.1 实现代码

 '''
函数localWords()与程序清单中的spamTest()函数几乎相同,区别在于这里访问的是
RSS源而不是文件。然后调用函数calcMostFreq()来获得排序最高的30个单词并随后将它们移除
'''
def localWords(feed1,feed0):
import feedparser
docList=[]; classList = []; fullText =[]
minLen = min(len(feed1['entries']),len(feed0['entries']))
for i in range(minLen):
wordList = textParse(feed1['entries'][i]['summary'])
docList.append(wordList)
fullText.extend(wordList)
classList.append(1) #NY is class 1
wordList = textParse(feed0['entries'][i]['summary'])
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
top30Words = calcMostFreq(vocabList,fullText) #remove top 30 words
for pairW in top30Words:
if pairW[0] in vocabList: vocabList.remove(pairW[0])
trainingSet = list(range(2*minLen)); testSet=[] #create test set
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print('the error rate is: ',float(errorCount)/len(testSet))
return vocabList,p0V,p1V def calcMostFreq(vocabList,fullText):
'''
返回前30个高频词
'''
import operator
freqDict = {}
for token in vocabList:
freqDict[token]=fullText.count(token)
sortedFreq = sorted(freqDict.items(), key=operator.itemgetter(1), reverse=True)
return sortedFreq[:30] if __name__== "__main__":
#导入RSS数据源
import operator
ny=feedparser.parse('http://newyork.craigslist.org/stp/index.rss')
sf=feedparser.parse('http://sfbay.craigslist.org/stp/index.rss')
localWords(ny,sf)

机器学习实战笔记(Python实现)-03-朴素贝叶斯的更多相关文章

  1. 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)

    第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...

  2. Python实现nb(朴素贝叶斯)

    Python实现nb(朴素贝叶斯) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>ope ...

  3. 机器学习实战笔记(Python实现)-00-readme

    近期学习机器学习,找到一本不错的教材<机器学习实战>.特此做这份学习笔记,以供日后翻阅. 机器学习算法分为有监督学习和无监督学习.这本书前两部分介绍的是有监督学习,第三部分介绍的是无监督学 ...

  4. Python机器学习(基础篇---监督学习(朴素贝叶斯))

    朴素贝叶斯 朴素贝叶斯分类器的构造基础是贝叶斯理论.采用概率模型来表述,定义x=<x1,x2,...,xn>为某一n维特征向量,y∈{c1,c2,...ck}为该特征向量x所有k种可能的类 ...

  5. Python实现 利用朴素贝叶斯模型(NBC)进行问句意图分类

    目录 朴素贝叶斯分类(NBC) 程序简介 分类流程 字典(dict)构造:用于jieba分词和槽值替换 数据集构建 代码分析 另外:点击右下角魔法阵上的[显示目录],可以导航~~ 朴素贝叶斯分类(NB ...

  6. 机器学习实战笔记(Python实现)-08-线性回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  7. 机器学习实战笔记(Python实现)-05-支持向量机(SVM)

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  8. 机器学习实战笔记(Python实现)-04-Logistic回归

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

  9. 机器学习实战笔记(Python实现)-01-K近邻算法(KNN)

    --------------------------------------------------------------------------------------- 本系列文章为<机器 ...

随机推荐

  1. RangePartitioner 实现简记

    摘要: 1.背景 2.rangeBounds 上边界数组源码走读 3.RangePartitioner的sketch 源码走读 4.determineBounds 源码走读 5.关于RangePart ...

  2. postman使用

    1.postman的下载:google首页左上角应用,点击后,如果没有下载postman,就在google商店搜索,点击右边按钮 2.下载后重新打开google首页,点击应用,可以看到已经下载过了,点 ...

  3. TCP同步与异步,长连接与短连接【转载】

    原文地址:TCP同步与异步,长连接与短连接作者:1984346023 [转载说明:http://zjj1211.blog.51cto.com/1812544/373896   这是今天看到的一篇讲到T ...

  4. SQL-从数据类型 varchar 转换为 bigint 时出错的解决方案

    解决

  5. CSS系列目录

    1.  在HTML中引入CSS的方法 2.  CSS选择器 2.1 CSS3新增选择器 3.  CSS的继承与层叠特性 4.  CSS中盒子模型 5.  CSS中盒子之间的关系 6.  CSS中盒子的 ...

  6. 在 CSS 预编译器之后:PostCSS

    提到css预编译器(css preprocessor),你可能想到Sass.Less以及Stylus.而本文要介绍的PostCSS,正是一个这样的工具:css预编译器可以做到的事,它同样可以做到. “ ...

  7. java自定义注解类

    一.前言 今天阅读帆哥代码的时候,看到了之前没有见过的新东西, 比如java自定义注解类,如何获取注解,如何反射内部类,this$0是什么意思? 于是乎,学习并整理了一下. 二.代码示例 import ...

  8. 使用MATLAB对图像处理的几种方法(上)

    实验一图像的滤波处理 一.实验目的 使用MATLAB处理图像,掌握均值滤波器和加权均值滤波器的使用,对比两种滤波器对图像处理结果及系统自带函数和自定义函数性能的比较,体会不同大小的掩模对图像细节的影响 ...

  9. PHP继承

    继承是PHP5面象对象程序设计的重要特性之一,它是指建立一个新的派生类,从一个或多个先前定义的类中继承数据和函数,而且可以重新定义或加进新数据和 函数,从而建立了类的层次或等级. 继承性是子类自动共享 ...

  10. CSS学习笔记——包含块 containing block

    以下内容翻译自CSS 2.1官方文档.网址:https://www.w3.org/TR/CSS2/visudet.html#strut 有时,一个元素的盒子的位置和尺寸根据一个确定的矩形计算,这个确定 ...