mahout源码KMeansDriver分析之五CIMapper
接上文重点分析map操作:
Vector probabilities = classifier.classify(value.get());// 第一行
Vector selections = policy.select(probabilities); // 第二行
for (Iterator<Element> it = selections.iterateNonZero(); it.hasNext();) {
Element el = it.next();
classifier.train(el.index(), value.get(), el.get()); // 第三行
}
这几句要如何理解?
比如我随机的中心点向量是:
2.9,2.9
3.0,3.0
然后我的所有的输入向量为:
[{1:8.1,0:8.1}, {1:8.0,0:8.0}, {1:7.0,0:7.0}, {1:7.1,0:7.1}, {1:6.1,0:6.1}, {1:6.2,0:6.2}, {1:9.0,0:9.0}, {1:2.0,0:2.0}, {1:7.1,0:7.1}, {1:1.0,0:1.0}, {}, {1:2.1,0:2.1}, {1:2.9,0:2.9}, {1:1.1,0:1.1}, {1:0.1,0:0.1}, {1:3.0,0:3.0}]
那么第一行就是针对一个输入向量,求其到中心点向量的距离,如果我有三个中心点,那么probabilities的size就是3,第二行的作用就是找到probabilities值较大(这里为什么是较大?而不是较小?因为在求距离的时候用到了倒数,这样原来小的就变大了,具体计算过程有时间再分析)的下标值,然后用第三行的方法把这个输入向量分入到其对应的中心点向量。如何分?比如第一个输入向量[8.1,8.1]那么应该把其分入[3.0,3.0],那么第1个中心点向量在第一条记录后,其s0=2,s1=8.1+3.0,s2=8.1*8.1+3.0*3.0 ,一次类推,等全部输入结束后,两个中心点的属性如下:
[2.9,2.9]: s0=8, s1={1:12.1,0:12.1} ,s2={1:27.450000000000003,0:27.450000000000003}
[3.0,3.0]: s0=10, s1={1:64.60000000000001,0:64.60000000000001} , s2={1:454.08000000000004,0:454.08000000000004}
然后这两个中心点 输出到reduce;
然后我整体跑了一遍,得到第一个输出结果即cluster-1的结果是两个中心点,为 CL-12{n=8 c=[1.513, 1.513] r=[1.069, 1.069]},
CL-15{n=10 c=[6.460, 6.460] r=[1.917, 1.917]}。
然后我又仿造了Reducer:
package mahout.fansy.kmeans; import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.mahout.clustering.Cluster;
import org.apache.mahout.clustering.classify.ClusterClassifier;
import org.apache.mahout.clustering.iterator.ClusterWritable;
import org.apache.mahout.clustering.iterator.ClusteringPolicy;
import org.apache.mahout.common.iterator.sequencefile.PathFilters;
import org.apache.mahout.common.iterator.sequencefile.PathType;
import org.apache.mahout.common.iterator.sequencefile.SequenceFileDirValueIterable;
import org.apache.mahout.math.Vector;
import org.apache.mahout.math.VectorWritable;
import org.apache.mahout.math.Vector.Element; import com.google.common.collect.Lists; public class TestCIReducer { /**
* @param args
*/ private static ClusterClassifier classifier; private static ClusteringPolicy policy; public static void main(String[] args) throws IOException {
setup();
reduce();
} /**
* 仿造setup函数
* @throws IOException
*/
public static void setup() throws IOException{ Configuration conf=new Configuration();
conf.set("mapred.job.tracker", "hadoop:9001"); // 这句是否可以去掉? String priorClustersPath ="hdfs://hadoop:9000/user/hadoop/out/kmeans-output/clusters-0";
classifier = new ClusterClassifier();
classifier.readFromSeqFiles(conf, new Path(priorClustersPath));
policy = classifier.getPolicy();
policy.update(classifier);
}
/**
* 仿造map函数
*/
public static void map(){
List<VectorWritable> vList=getInputData();
for(VectorWritable value: vList){
Vector probabilities = classifier.classify(value.get());
Vector selections = policy.select(probabilities);
for (Iterator<Element> it = selections.iterateNonZero(); it.hasNext();) {
Element el = it.next();
classifier.train(el.index(), value.get(), el.get());
}
}
} /**
* 仿造cleanup函数
*/
public static List<ClusterWritable> cleanup(){
List<Cluster> clusters = classifier.getModels();
List<ClusterWritable> cList=Lists.newArrayList();
ClusterWritable cw = null;
for (int index = 0; index < clusters.size(); index++) {
cw=new ClusterWritable();
cw.setValue(clusters.get(index));
cList.add(cw);
//System.out.println("index:"+index+",cw :"+ cw.getValue().getCenter() );
}
return cList;
} public static void reduce(){
map(); // 给classifier赋值
List<ClusterWritable>cList = cleanup();
ClusterWritable first = null;
for (ClusterWritable cw :cList) {
if (first == null) {
first = cw;
} else {
first.getValue().observe(cw.getValue());
}
}
List<Cluster> models = new ArrayList<Cluster>();
models.add(first.getValue());
classifier = new ClusterClassifier(models, policy);
classifier.close();
System.out.println("value:"+first); } /**
* 获得输入数据
* @return
*/
public static List<VectorWritable> getInputData(){
String input="hdfs://hadoop:9000/user/hadoop/out/kmeans-in-transform/part-r-00000";
Path path=new Path(input);
Configuration conf=new Configuration();
List<VectorWritable> vList=Lists.newArrayList();
for (VectorWritable cw : new SequenceFileDirValueIterable<VectorWritable>(path, PathType.LIST,
PathFilters.logsCRCFilter(), conf)) {
vList.add(cw);
}
return vList;
}
}
但是最终只是输出了一个中心点,结果有误?应该是我仿造的代码有问题,明天继续。。。
分享,快乐,成长
转载请注明出处:http://blog.csdn.net/fansy1990
mahout源码KMeansDriver分析之五CIMapper的更多相关文章
- mahout源码KMeansDriver分析之五CIMapper初探
接着上篇,继续分析代码.下面就到了MR的循环了,这里MR应该算是比较好理解的,重点是退出循环的条件设置,即如何判断前后两次中心点误差小于给定阈值. 首先,while循环: while (iterati ...
- mahout源码KMeansDriver分析之四
昨天说到为什么Configuration没有设置conf.set("mapred.job.tracker","hadoop:9000")仍然可以访问hdfs文件 ...
- Mahout源码MeanShiftCanopyDriver分析之二MeanShiftCanopyMapper仿造
首先更正一点,昨天处理数据的时候是有问题的,直接从网页中拷贝的文件的空格是有问题的,直接拷贝然后新建的文件中的空格可能有一个两个.三个的,所以要把两个或者三个的都换为一个,在InputMapper中下 ...
- Mahout源码目录说明&&算法集
Mahout源码目录说明 mahout项目是由多个子项目组成的,各子项目分别位于源码的不同目录下,下面对mahout的组成进行介绍: 1.mahout-core:核心程序模块,位于/core目录下: ...
- mybatis源码配置文件解析之五:解析mappers标签(解析XML映射文件)
在上篇文章中分析了mybatis解析<mappers>标签,<mybatis源码配置文件解析之五:解析mappers标签>重点分析了如何解析<mappers>标签中 ...
- MapReduce的ReduceTask任务的运行源码级分析
MapReduce的MapTask任务的运行源码级分析 这篇文章好不容易恢复了...谢天谢地...这篇文章讲了MapTask的执行流程.咱们这一节讲解ReduceTask的执行流程.ReduceTas ...
- Activity源码简要分析总结
Activity源码简要分析总结 摘自参考书籍,只列一下结论: 1. Activity的顶层View是DecorView,而我们在onCreate()方法中通过setContentView()设置的V ...
- MapReduce的MapTask任务的运行源码级分析
TaskTracker任务初始化及启动task源码级分析 这篇文章中分析了任务的启动,每个task都会使用一个进程占用一个JVM来执行,org.apache.hadoop.mapred.Child方法 ...
- TaskTracker任务初始化及启动task源码级分析
在监听器初始化Job.JobTracker相应TaskTracker心跳.调度器分配task源码级分析中我们分析的Tasktracker发送心跳的机制,这一节我们分析TaskTracker接受JobT ...
随机推荐
- 注解在android中的使用
注解在android程序中的使用 何为注解: 在Java其中,注解又叫做"元数据",它为我们在源码中加入信息提供了一种形式化的方法.让我们能在以后的某个时间方便的使用这些数据.更确 ...
- EasyUI - Tabs
代码: 判断是不是已经存在,如果存在,则直接选中,否则创建新的tab. $('#tabs').tabs({ fit: true, border: false }) $('#Tree').tree({ ...
- ABAP常用字符串处理
1.SEARCH搜索指定字符串 REPORT Z_CHAR. ). MOVE 'Welcom to sap world!' to str. SEARCH str for 'sap'. 如果查找成功sy ...
- jquery用div模拟一个下拉列表框
原文 jquery用div模拟一个下拉列表框 今天分享一个用我自己用jquery写的,用div模拟下拉列表select,这个效果网上有很多,但是写一个有自己思路的代码效果,更有成就感,先看截图: 自我 ...
- goldengate 简单配置 oracle to oralce
做oracle时配置的,goldengate 是同步异构数据库最好的工具.这个是基于oracle to oracle 单向复制 添加增量复制进程 add extract process -- -- ...
- PLSQL数据导入
导入数据 (1) 首先以管理员身份登录plsql; (2) 新建命令窗口 (3) 创建用户,设置帐号,密码 创建语句:create user usernameidenti ...
- css hack 如何区分 ie7 ie8
.style { width:100px; /*火狐以及一般浏览器*/ width:200px\9; /*IE8*/ *width:150px; /*IE7*/ _width:50px; /*IE6* ...
- 【玩转cocos2d-x之四十】怎样在Cocos2d-x 3.0中使用opengl shader?
有小伙伴提出了这个问题.事实上GLProgramCocos2d-x引擎自带了.全然能够直接拿来用. 先上图吧. 使用opengl前后的对照: watermark/2/text/aHR0cDovL2Js ...
- Java-对象多态性
class A { public void fun1() { System.out.println("<----A------>"); } public v ...
- qsettings 保存自定义结构体(QVariant与自定义结构体相互转化)
参考博文:QVariant与自定义数据类型转换的方法. 这里摘取其关键内容: 1.将自定义数据类型使用Q_DECLARE_METATYPE宏进行声明,便于编译器识别. 2.在插入对象的时候,声明QVa ...