2150: 部落战争

Time Limit: 10 Sec  Memory Limit: 259 MB

Description

lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土。 A国是一个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住。lanzerb把自己的部落分成若干支军队,他们约定: 1. 每支军队可以从任意一个城镇出发,并只能从上往向下征战,不能回头。途中只能经过城镇,不能经过高山深涧。 2. 如果某个城镇被某支军队到过,则其他军队不能再去那个城镇了。 3. 每支军队都可以在任意一个城镇停止征战。 4. 所有军队都很奇怪,他们走的方法有点像国际象棋中的马。不过马每次只能走1*2的路线,而他们只能走R*C的路线。 lanzerb的野心使得他的目标是统一全国,但是兵力的限制使得他们在配备人手时力不从心。假设他们每支军队都能顺利占领这支军队经过的所有城镇,请你帮lanzerb算算至少要多少支军队才能完成统一全国的大业。

Input

第一行包含4个整数M、N、R、C,意义见问题描述。接下来M行每行一个长度为N的字符串。如果某个字符是'.',表示这个地方是城镇;如果这个字符时'x',表示这个地方是高山深涧。

Output

输出一个整数,表示最少的军队个数。

Sample Input

【样例输入一】
3 3 1 2
...
.x.
...
【样例输入二】
5 4 1 1
....
..x.
...x
....
x...

Sample Output

【样例输出一】
4

【样例输出二】
5
【样例说明】

【数据范围】
100%的数据中,1<=M,N<=50,1<=R,C<=10。

 
由题意描述可得这是一个DAG(有向无环图,最小路径覆盖前提条件),并且满足最小路径覆盖(路径覆盖:在图中找一些路径,使之覆盖了图中的所有顶点,且任何一个顶点有且只有一条路径与之关联,最小路径覆盖=原图中所有点数-最大匹配)。这题就是模板啦~先拆点,再搞搞搞!
 
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std; int n,m,r,c,cnt,cntx,ans;
struct sdt
{
int st,to,nxt;
}e[50005];
char p[205][205];
int num[205][205],head[50005],res[50005];
bool vis[50005]; void add(int x,int y)
{
e[++cntx].st=x;
e[cntx].to=y;
e[cntx].nxt=head[x];
head[x]=cntx;
} bool dfs(int x)
{
for(int i=head[x];i;i=e[i].nxt)
{
if(!vis[e[i].to])
{
vis[e[i].to]=1;
if(!res[e[i].to] || dfs(res[e[i].to]))
{
res[e[i].to]=x;
return 1;
}
}
}
return 0;
} int main()
{
scanf("%d%d%d%d",&n,&m,&r,&c);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>p[i][j];
if(p[i][j]=='.')num[i][j]=++cnt;
}
} for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(!num[i][j])continue;
if(i+r<=n && j+c<=m && num[i+r][j+c])
add(num[i][j],num[i+r][j+c]+cnt);
if(i+r<=n && j-c>0 && num[i+r][j-c])
add(num[i][j],num[i+r][j-c]+cnt);
if(i+c<=n && j+r<=m && num[i+c][j+r])
add(num[i][j],num[i+c][j+r]+cnt);
if(i+c<=n && j-r>0 && num[i+c][j-r])
add(num[i][j],num[i+c][j-r]+cnt);
}
} for(int i=1;i<=cnt;i++)
{
memset(vis,0,sizeof(vis));
if(dfs(i))ans++;
} printf("%d\n",cnt-ans);
return 0;
}

  

BZOJ-2150部落战争(最小路径覆盖)的更多相关文章

  1. BZOJ2150部落战争——最小路径覆盖

    题目描述 lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土. A国是一 个M*N的矩阵,其中某些地方是城镇,某些地方是高山深涧无人居住.lanzerb ...

  2. BZOJ 2150: 部落战争 最大流

    2150: 部落战争 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php? ...

  3. BZOJ 2150 部落战争 (二分图匹配)

    题目大意:给你一个n*m的棋盘,有一些坏点不能走,你有很多军队,每支军队可以像象棋里的马一样移动,不过马是1*2移动的,而军队是r*c移动的,军队只能从上往下移动,如果一个点已经被一直军队经过,那么其 ...

  4. 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】

    P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...

  5. [bzoj2150]部落战争_二分图最小路径覆盖

    部落战争 bzoj-2150 题目大意:题目链接. 注释:略. 想法: 显然是最小路径覆盖,我们知道:二分图最小路径覆盖等于节点总数-最大匹配. 所以我们用匈牙利或者dinic跑出最大匹配,然后用总结 ...

  6. P2172 [国家集训队]部落战争(最小路径覆盖)

    P2172 [国家集训队]部落战争 每个点仅走一次:最小路径覆盖 套路地拆点,具体看代码中的$draw()$ 流量每增加1,意味着一支军队可以多走一格,代价减少1 最后答案即为总点数$-dinic() ...

  7. bzoj 2150 最小路径覆盖

    最小路径覆盖问题是:给定一个DAG,该DAG的一个路径覆盖是一个路径的集合,使得每个点属于且仅属于其中一条路径,问题就是求一个大小最小的路径集合. 做法是将每个点A拆成两个点A1,A2,如果A-> ...

  8. 【最小路径覆盖】【二分图】【最大流】【Dinic】bzoj2150 部落战争

    裸的最小路径覆盖. 把每个点拆点,变成二分图. 对于可以连边的点对(i,j):i->j'(1); 对于任意一点i,若i点为'.':S->i(1),i'->T(1); 答案为所有'.' ...

  9. 国家集训队 部落战争 网络流最小路径覆盖 洛谷P2172

    洛谷AC传送门! step1: 题目大意 有一张M x N的网格图,有一些点为“ * ”可以走,有一些点为“ x ”不能走,每走一步你都可以移动R * C 个格子(参考象棋中马的走法),且不能回头,已 ...

随机推荐

  1. (转)java 从jar包中读取资源文件

    (转)java 从jar包中读取资源文件 博客分类: java   源自:http://blog.csdn.net/b_h_l/article/details/7767829 在代码中读取一些资源文件 ...

  2. 黑科技--位集--bitset

    自从上次网赛发现这么个东西之后,深深地感受到了bitset的强大,0.0. 正常的bool占用1字节空间,bitset可以把这个缩到1bit,空间上8倍优化.正常用起来可能会跟位运算状态压缩类似,但是 ...

  3. Spring ---annotation (重点)--Resource, Component 重要!!!

    beans.xml: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="ht ...

  4. 前台html与后台php通信(上传文件)

    这部分为导入txt文本文件,存放在服务器然后返回txt文本的内容到前台进行相应操作 前台html代码 <div id="coordinate_div">         ...

  5. Tomcat 静态部署 二步特别注意

    一.修改server.xml 在Host 节点添加如下配置 <!-- path 为请求url地址 docBase 为项目文件绝对地址制定到WebContent根目录下 --> <Co ...

  6. iOS开发——NSArray中的字典排序

    手头上碰到一个项目,需要给数组中的字典中的一个字段排序,想了想,干脆再字典中增加一个字段,用来记录需要排序字段的第一个字符,用它来作为比较的对象,进行排序. - (void)viewDidLoad { ...

  7. list集合怎么转化成一个javaBean对象,及常见的使用方法(全)

    一.List集合的用法 1.list集合添加实体并输出 for (int i = 0; i < list.size(); i++) { javabean obj= (javabean)list. ...

  8. brew udpate出现错误“/usr/local is not writable.”的问题解决

    如图所示: 在命令行输入: sudo chown -R 当前登录的用户名 /usr/local 再次输入: brew update 问题解决.

  9. linux下源码编译安装mysql

    1.安装依赖的包: yum install -y gdb cmake ncurses-devel bison bison-devel 2.创建mysql安装目录和数据文件目录 mkdir -p /us ...

  10. struts2拦截器-自定义拦截器,放行某些方法(web.xml配置)

    一.web.xml配置 <filter> <filter-name>encodingFilter</filter-name> <filter-class> ...