Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)
C. Coloring Trees
2 seconds
256 megabytes
standard input
standard output
ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.
Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.
ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, jlitres of paint.
The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color :{2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.
ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.
Please note that the friends can't color the trees that are already colored.
The first line contains three integers, n, m and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.
The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.
Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j(1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color j. pi, j's are specified even for the initially colored trees, but such trees still can't be colored.
Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print - 1.
3 2 2
0 0 0
1 2
3 4
5 6
10
3 2 2
2 1 2
1 3
2 4
3 5
-1
3 2 2
2 0 0
1 3
2 4
3 5
5
3 2 3
2 1 2
1 3
2 4
3 5
0
In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).
In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is - 1.
In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.
比赛时这题虽没AC,但是写出来的代码的思想和题解一样,感觉很欣慰,DP开始入门了。
dp[i][j][k],i表示当前第i位,j表示当前颜色,k表示当前种类。
考虑当前第i位,若这一位已填颜色,则考虑dp[i-1][][],讨论一下前面和现在颜色是否相同。
若未填颜色,则j从1枚举到m的颜色,k也从1枚举到K.考虑前一位是否相同即可。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const ll inf = 0x3f3f3f3f3f3f3f3f;
const int maxn = ;
ll dp[maxn][maxn][maxn];
int c[maxn];
int col[maxn][maxn];
int main()
{
int n,m,k;
cin>>n>>m>>k;
for(int i=;i<=n;i++) scanf("%d",&c[i]);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
scanf("%d",&col[i][j]);
}
}
memset(dp,inf,sizeof(dp));
if(c[]) dp[][c[]][] = ;
else
{
for(int j=;j<=m;j++) dp[][j][] = col[][j];
}
for(int i=;i<=n;i++)
{
if(c[i])
{
for(int p=;p<=k;p++)
{
dp[i][c[i]][p] = min(dp[i][c[i]][p],dp[i-][c[i]][p]);
for(int q=;q<=m;q++)
{
if(q!=c[i]) dp[i][c[i]][p] = min(dp[i][c[i]][p],dp[i-][q][p-]);
}
}
}
else
{
for(int p=;p<=m;p++)
{
for(int q=;q<=k;q++)
{
dp[i][p][q] = min(dp[i][p][q],dp[i-][p][q]+col[i][p]);
for(int la=;la<=m;la++)
{
if(p!=la) dp[i][p][q] = min(dp[i][p][q],dp[i-][la][q-]+col[i][p]);
}
}
}
}
}
ll ans = inf;
for(int j=;j<=m;j++)
{
ans = min(ans,dp[n][j][k]);
}
printf("%I64d\n",ans==inf?-:ans);
return ;
}
Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)的更多相关文章
- Codeforces Round #369 (Div. 2) C. Coloring Trees(dp)
Coloring Trees Problem Description: ZS the Coder and Chris the Baboon has arrived at Udayland! They ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees(简单dp)
题目:https://codeforces.com/problemset/problem/711/C 题意:给你n,m,k,代表n个数的序列,有m种颜色可以涂,0代表未涂颜色,其他代表已经涂好了,连着 ...
- Codeforces Round #367 (Div. 2) C. Hard problem(DP)
Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees 动态规划
C. Coloring Trees 题目连接: http://www.codeforces.com/contest/711/problem/C Description ZS the Coder and ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees DP
C. Coloring Trees ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the pa ...
- Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)
题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...
- Codeforces Round #369 (Div. 2)-C Coloring Trees
题目大意:有n个点,由m种颜料,有些点没有涂色,有些点已经涂色了,告诉你每个点涂m种颜色的价格分别是多少, 让你求将这n个点分成k段最少需要多少钱. 思路:动态规划,我们另dp[ i ][ j ][ ...
- Codeforces Round #245 (Div. 1) B. Working out (dp)
题目:http://codeforces.com/problemset/problem/429/B 第一个人初始位置在(1,1),他必须走到(n,m)只能往下或者往右 第二个人初始位置在(n,1),他 ...
- Codeforces Round #260 (Div. 1) 455 A. Boredom (DP)
题目链接:http://codeforces.com/problemset/problem/455/A A. Boredom time limit per test 1 second memory l ...
随机推荐
- Django:之中间件、微信接口和单元测试
Django中间件 我们从浏览器发出一个请求 Request,得到一个响应后的内容 HttpResponse ,这个请求传递到 Django的过程如下: 也就是说,每一个请求都是先通过中间件中的 pr ...
- jsoup抓取数据
jsoup的主要功能如下: 1. 从一个URL,文件或字符串中解析HTML: 2. 使用DOM或CSS选择器来查找.取出数据: 3. 可操作HTML元素.属性.文本: 接下来介绍jsoup 是如何优雅 ...
- SQL中的左连接与右连接有什么区别,点解返回值会不同?(转)
例子,相信你一看就明白,不需要多说 A表(a1,b1,c1) B表(a2,b2) a1 b1 c1 a2 b2 01 数学 95 01 张三 02 语文 90 02 李四 03 英语 80 04 王五 ...
- 转 Oracle 12C 之 CDB/PDB用户的创建与对象管理
在Oracle 12C中,账号分为两种,一种是公用账号,一种是本地账号(亦可理解为私有账号).共有账号是指在CDB下创建,并在全部PDB中生效的账号,另一种是在PDB中创建的账号. 针对这两种账号的测 ...
- 解决centos无法上传文件和打开文件夹
使用yum搭建了ftp服务..yum的使用参考:http://blog.csdn.net/enson16855/article/details/9140623 windows使用FileZilla连接 ...
- Hibernate 系列教程15-一级缓存
Product public class Product { private Long id; private String name; Product.hbm.xml <class name= ...
- struts2中的文件上传,文件下载
文件上传: Servlet中的文件上传回顾 前台页面 1.提交方式post 2.表单类型 multipart/form-data 3.input type=file 表单输入项 后台 apache提交 ...
- [Android]通过JNI访问并操作Bitmap的元素,支持RGB565和ARGB8888
[Android]通过JNI访问并操作Bitmap的元素,支持RGB565和ARGB8888 标签: androidbitmapjni 2014-05-09 20:35 2985人阅读 评论(1) 收 ...
- acm课程练习2--1001
题目描述 Now,given the equation 8x^4 + 7x^3 + 2x^2 + 3x + 6 == Y,can you find its solution between 0 and ...
- pat L2-006. 树的遍历
L2-006. 树的遍历 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历 ...