UCI机器学习数据库
UC Irvine Machine Learning Repository:UCI指的是加州大学欧文分校。UCI机器学习库主要是收集的机器学习领域的一些相关数据集和数据生成器,可以用来做一些基本的实验。存档是创建为大卫阿哈和加州大学欧文分校研究员在1987年研究生FTP文件。自那时以来,它已被广泛用于学生,教育工作者,和其他研究机器学习的研究者,作为一个数据来源。
UCI数据集 的说明 告诉了读者 数据的属性和类别,用户可以用自己的数据挖掘方法去将 uci数据集的分类,将结果与数据说明的结果对比。说明自己算法的正确性。
连接地址:http://archive.ics.uci.edu/ml/index.html。
===============================
在看别人的论文时,别人使用的数据集会给出数据集的出处或下载地址(除非是很机密的数据,例如与国家安全有关)。如果你看的论文没有给出数据集的出处,请立即停止看这篇论文,并且停止看刊发这篇论文的期刊上的所有文章。因为可以断定这些文章质量很差。
关于源代码,网上有很多公开源码的算法包,例如最为著名的Weka,MLC++等。Weka还在不断的更新其算法,下载地址:
http://www.cs.waikato.ac.nz/ml/weka/
很多的机器学习的经典算法都在里面。而且公布源程序,易于修改。
如果作者没有公布源程序,可以到作者主页找找,也可以写信给作者要,一般论文开头都会有作者的email地址。写信的时候要注意要很有礼貌,否则作者,尤其是著名学者,很有可能不会理睬。如果算法简单,可以自己实现。
关于论文的下载,如果能够访问电子图书馆是最好的,很多学校都买了IEEE, Elsevier, Kluwer等,上面的期刊都不错。有一些很好的期刊是免费的,像JAIR和JMLR,分别在:
http://www.cs.washington.edu/research/jair/home.html
http://www.jmlr.org/
====================================
关于源代码,网上有很多公开源码的算法包,例如最为著名的Weka,MLC++等。Weka还在不断的更新其算法,下载地址:
http://www.cs.waikato.ac.nz/ml/weka/
UCI收集的机器学习数据集
ftp://pami.sjtu.edu.cn
http://www.ics.uci.edu/~mlearn/\\MLRepository.htm
statlib
http://liama.ia.ac.cn/SCILAB/scilabindexgb.htm
http://lib.stat.cmu.edu/
样本数据库
http://kdd.ics.uci.edu/
http://www.ics.uci.edu/~mlearn/MLRepository.html
关于基金的数据挖掘的网站
http://www.gotofund.com/index.asp
http://lans.ece.utexas.edu/~strehl/
reuters数据集
http://www.research.att.com/~lewis/reuters21578.html
各种数据集:
http://kdd.ics.uci.edu/summary.data.type.html
http://www.mlnet.org/cgi-bin/mlnetois.pl/?File=datasets.html
http://lib.stat.cmu.edu/datasets/
http://dctc.sjtu.edu.cn/adaptive/datasets/
http://fimi.cs.helsinki.fi/data/
http://www.almaden.ibm.com/software/quest/Resources/index.shtml
http://miles.cnuce.cnr.it/~palmeri/datam/DCI/
进行文本分类&WEB
http://www-2.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html
http://www.w3.org/TR/WD-logfile-960221.html
http://www.w3.org/Daemon/User/Config/Logging.html#AccessLog
http://www.w3.org/1998/11/05/WC-workshop/Papers/bala2.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
http://www.web-caching.com/traces-logs.html
http://www-2.cs.cmu.edu/webkb
http://www.cs.auc.dk/research/DP/tdb/TimeCenter/TimeCenterPublications/TR-75.pdf
http://www.cs.cornell.edu/projects/kddcup/index.html
时间序列数据的网址
http://www.stat.wisc.edu/~reinsel/bjr-data/
apriori算法的测试数据
http://www.almaden.ibm.com/cs/quest/syndata.html
数据生成器的链接
http://www.cse.cuhk.edu.hk/~kdd/data_collection.html
http://www.almaden.ibm.com/cs/quest/syndata.html
关联:
http://flow.dl.sourceforge.net/sourceforge/weka/regression-datasets.jar
http://www.almaden.ibm.com/software/quest/Resources/datasets/syndata.html#assocSynData
WEKA:
http://flow.dl.sourceforge.net/sourceforge/weka/regression-datasets.jar
1。A jarfile containing 37 classification problems, originally obtained from the UCI repository
http://prdownloads.sourceforge.net/weka/datasets-UCI.jar
2。A jarfile containing 37 regression problems, obtained from various sources
http://prdownloads.sourceforge.net/weka/datasets-numeric.jar
3。A jarfile containing 30 regression datasets collected by Luis Torgo
http://prdownloads.sourceforge.net/weka/regression-datasets.jar
癌症基因:
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
金融数据:
http://lisp.vse.cz/pkdd99/Challenge/chall.htm
kdnuggets 相关链接数据集(借花献佛了):
http://www.kdnuggets.com/datasets/index.html
另一个人提供的
http://www.cs.toronto.edu/~roweis/data.html
http://kdd.ics.uci.edu/summary.task.type.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
http://www.phys.uni.torun.pl/~duch/software.html
在下面的网址可以找到reuters数据集
http://www.research.att.com/~lewis/reuters21578.html
以下网址上有各种数据集:
http://kdd.ics.uci.edu/summary.data.type.html
进行文本分类,还有一个数据集是可以用的,即rainbow的数据集
http://www-2.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html
Download the Financial Data (~17.5M zipped file, ~67M unzipped data)
Download the Medical Data (~2M zipped file, ~6M unzipped data)
http://lisp.vse.cz/pkdd99/Challenge/chall.htm
UCI机器学习数据库的更多相关文章
- UCI机器学习库和一些相关算法(转载)
UCI机器学习库和一些相关算法 各种机器学习任务的顶级结果(论文)汇总 https://github.com//RedditSota/state-of-the-art-result-for-machi ...
- 机器学习之分类问题实战(基于UCI Bank Marketing Dataset)
导读: 分类问题是机器学习应用中的常见问题,而二分类问题是其中的典型,例如垃圾邮件的识别.本文基于UCI机器学习数据库中的银行营销数据集,从对数据集进行探索,数据预处理和特征工程,到学习模型的评估与选 ...
- 【原创】数据挖掘案例——ReliefF和K-means算法的医学应用
数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知 ...
- Logistic回归小结
1.梯度上升优化 1). 伪代码: 所有回归系数初始化为1-------------------weights = ones((colNum,1)) 重复r次: 计算整个数据集的梯度gradient ...
- 基于ReliefF和K-means算法的医学应用实例
基于ReliefF和K-means算法的医学应用实例 数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据 ...
- 浅谈关于特征选择算法与Relief的实现
一. 背景 1) 问题 在机器学习的实际应用中,特征数量可能较多,其中可能存在不相关的特征,特征之间也可能存在相关性,容易导致如下的后果: 1. 特征个数越多,分析特征.训练模型所需的时间就越 ...
- 数据挖掘案例:基于 ReliefF和K-means算法的应用
数据挖掘案例:基于 ReliefF和K-means算法的应用 数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘(DataMiriing),指的是从大型数据库 ...
- 【机器学习Machine Learning】资料大全
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...
- 机器学习03:K近邻算法
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...
随机推荐
- VBS 选择文件夹框
VBS 选择文件夹框 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 on error resume Next Const ...
- loadrunner使用socket协议来实现客户端对服务器产生压力实例。(通过发送心跳包,达到连接多个客户端的目的)
#include "lrs.h" vuser_init(){ char *ip; int handler; //编写获取LR分配的Vuser IP函数,将IP保存在ip变量中. i ...
- Chapter 2 Open Book——14
I backpedaled. "They seemed nice enough to me. I just noticed they keptto themselves. 我改口说道,他们看 ...
- SQL IO监控
DBCC DROPCLEANBUFFERS --清空缓存 SET STATISTICS IO { ON | OFF } SET STATISTICS TIME { ON | OFF }
- Ansible6:Playbook简单使用【转】
ansbile-playbook是一系列ansible命令的集合,利用yaml 语言编写.playbook命令根据自上而下的顺序依次执行.同时,playbook开创了很多特性,它可以允许你传输某个命令 ...
- 多个dropdownlist只有第一个能选中,其他选不中之我见
前段时间遇到这个问题,发现在页面中的源代码已经显示selected=“selected" 可是还是选中的第一项,试过很多办法,都不行,最后只好靠js来解决了,获取所有的dropdownlis ...
- 贪心+bfs 或者 并查集 Codeforces Round #268 (Div. 2) D
http://codeforces.com/contest/469/problem/D 题目大意: 给你一个长度为n数组,给你两个集合A.B,再给你两个数字a和b.A集合中的每一个数字x都也能在a集合 ...
- MPEG1的码流层次与各层次的作用
1. 序列层(Sequence layer) 序列层主要用于为随机播放提供全局参数支持,这些参数包括图像宽高.像素高宽比.帧率.码率.VBV大小.帧内量化矩阵.帧间量化矩阵. 2. 图像组层(Grou ...
- pci 相关资料
1.http://www.cnblogs.com/image-eye/archive/2012/02/15/2352699.html
- kvm and virtualbox running side by side
http://dedoimedo.com/computers/kvm-virtualbox.html