struct TreeNode{

int val;

TreeNode* left;

TreeNode* right;

TreeNode(int val):val(val),left(NULL),right(NULL){}

};

Not all binary trees are binary search trees.

4.1 Implement a function to check if a tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that no two leaf nodes differ in distance from the root by more than one.

Calculate all node's two leaf by recursion, in each recursion, judge its two leaf nodes differ is more than one or not. -1 represents no balanced, and >=0 represents balanced.

int depthAndCheck(TreeNode *root){

if(root==NULL)return 0;

else{

int leftD = depthAndCheck(root->left);

int rightD = depthAndCheck(root->right);

if(leftD==-1||rightD==-1)return -1; //find one node no balanced,then the tree is no balanced.

if(leftD-rightD<=-2||leftD-rightD>=2)return -1; //judge its two children.

return max(leftD,rightD)+1;

}

}

4.2 Given a directed graph, design an algorithm to find out whether there is a route between two nodes.

struct GraphNode{

int val; //value

vector<GraphNode*> next; //directed to nodes

};

Here, two nodes are A and B, we breadth first search the graph at the beginning of A to see whether there is a route from A to B, then breadth first search at the beginning of B to see whether there is a route from B to
A. We declare a set<GraphNode*> to record whether the Node is visited.

bool isHaveRoute(GraphNode *A,GraphNode *B){

if(A==B)return true;

set<GraphNode*>  visited;

list<GraphNode*>  array[2];

int cur=0,pre=1;

array[0].push(A);visited.insert(A);

while(!array[cur].empty()){

cur=!cur;pre=!pre;

array[cur].clear();

while(!array[pre].empty()){

for(int i=0;i<array[pre].front()->next.size();i++){

if(visited.count(array[pre].front()->next[i])==0){

if(array[pre].front()->next[i]==B)return true;

array[cur].push(array[pre].front()->next[i]);

visited.insert(array[pre].front()->next[i]);

}

}

array[pre].pop_front();

}

}

return false;

}

bool isHaveRouteAB(GraphNode *A,GraphNode *B){

if(isHaveRoute(A,B)||isHaveRoute(B,A))return true;

else return false;

}

4.3 Given a sorted (increasing order) array, write an algorithm to create a binary tree with minimal height.

I think the problem is to create a binary search tree with minimal height.

The left child is smaller than the parent and the right child is bigger than the parent. So, we can find the middle of the array, and divide this array to two part, the left part is the left child part of the middle and
the right part is the right child part.

TreeNode* binaryST(int a[],int left,int right){

if(left>right)return NULL;

int mid=left+(right-left)/2;

TreeNode *parent = new TreeNode(a[mid]);

parent->left = binaryST(a,left,mid-1);

parent->right = binaryST(a,mid+1,right);

return parent;

}

TreeNode *resBST(int a[],int n){

if(n<=0)return NULL;

return binaryST(a,0,n-1);

}

4.4 Given a binary search tree, design an algorithm which creates a linked list of all the nodes at each depth (i e , if you have a tree with depth D, you’ll have D linked lists).

BFS,like 4.2.

4.5 Write an algorithm to find the ‘next’ node (i e , in-order successor) of a given node in a binary search tree where each node has a link to its parent.

in-order, first, read the node's left, then the node, the the node's right.

When the node has right child, the successor will be the left-most child of it's right child part.

When the node is a left child,its parent is its successor.

When the node is a right child, traverse its parents until we find a parent that the node is in the left child part of this parent. This parent is the node's successor.

TreeNode* findNextNode(TreeNode* root){

if(root!=NULL)

if(root->parent==NULL||root->right!=NULL){

return findLeftMostChild(root->right);

}else{

while(root->parent){

if(root->parent->left==root)break;

root=root->parent;

}

return root->parent;

}

}

return NULL;

}

TreeNode* findLeftMostChild(TreeNode* root){

if(root==NULL)return NULL;

if(root->left)root=root->left;

return root;

}

4.6 Design an algorithm and write code to find the first common ancestor of two nodes in a binary tree.Avoid storing additional nodes in a data structure NOTE: This is not necessarily a binary search tree.

4.7 You have two very large binary trees: T1, with millions of nodes, and T2, with hundreds of nodes Create an algorithm to decide if T2 is a subtree of T1.

we traverse T1 to find a node that equal to T2's root, then compare T1 and T2 to find whether T2 is a subtree of T1.

bool isSubTree(TreeNode* T1,TreeNode* T2){

if(T2==NULL)return true;

if(T1==NULL)return false;

if(T1->val==T2->val){

if(isMatch(T1,T2))return true;

}

return isSubTree(T1->left,T2)||isSubTree(T1->right,T2);

}

bool isMatch(TreeNode* T1,TreeNode *T2){

if(T1==NULL&&T2==NULL)return true;

if(T1==NULL||T2==NULL)return false;

if(T1->val!=T2->val)return false;

return isMatch(T1->left,T2->left)&&isMatch(T1->right,T2->right);

}

4.8 You are given a binary tree in which each node contains a value. Design an algorithm to print all paths which sum up to that value. Note that it can be any path in the tree - it does not have to start at the root.

we declare a vector<int> to store one path from root to current node, and traverse this vector to find a path that sum up to the value.

void traverseAllPaths(TreeNode* root,int num,vector<int> buffer,int level){

if(root==NULL)return;

buffer.push_back(root->val);

int temp=num;

for(int i=level;i>=0;i--){

temp-=buffer[i];

if(temp==0)printfPath(buffer,i,level);

}

vector<int> bufferL,bufferR;

for(int i=0;i<buffer.size();i++){

bufferL.push_back(buffer[i]);

bufferR.push_back(buffer[i]);

}

traverseAllPaths(root->left,num,bufferL,level+1);

traverseAllPaths(root->right,num,bufferR,level+1);

}

void printfPath(vector<int> buffer,int begin,int end){

for(int i=begin;i<=end;i++)printf("%d ",buffer[i]);

printf("\n");

}

CareerCup Chapter 4 Trees and Graphs的更多相关文章

  1. Cracking the Coding Interview(Trees and Graphs)

    Cracking the Coding Interview(Trees and Graphs) 树和图的训练平时相对很少,还是要加强训练一些树和图的基础算法.自己对树节点的设计应该不是很合理,多多少少 ...

  2. 【CareerCup】Trees and Graphs—Q4.3

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/24744177     题目: Given a sorted (increasing ord ...

  3. Chp4: Trees and Graphs

    1.Type of Tree 1. Binary Tree: a binary tree is a tree in which each node has at most two child node ...

  4. Careercup | Chapter 1

    1.1 Implement an algorithm to determine if a string has all unique characters. What if you cannot us ...

  5. Careercup | Chapter 4

    二叉查换树,左孩子小于等于根,右孩子大于根. 完全二叉树,除最后一层外,每一层上的节点数均达到最大值:在最后一层上只缺少右边的若干结点. complete binary tree 满二叉树,完美二叉树 ...

  6. Careercup | Chapter 3

    3.1 Describe how you could use a single array to implement three stacks. Flexible Divisions的方案,当某个栈满 ...

  7. Careercup | Chapter 2

    链表的题里面,快慢指针.双指针用得很多. 2.1 Write code to remove duplicates from an unsorted linked list.FOLLOW UPHow w ...

  8. Careercup | Chapter 8

    8.2 Imagine you have a call center with three levels of employees: respondent, manager, and director ...

  9. Careercup | Chapter 7

    7.4 Write methods to implement the multiply, subtract, and divide operations for integers. Use only ...

随机推荐

  1. The tempfile module

    The tempfile module The tempfile module This module allows you to quickly come up with unique names ...

  2. 方案猿身高project联赛,艺术家,相反,养殖场!-------三笔

    已经看到了程序猿在电影中都是非常厉害的人物,硬道理键盘噼里啪啦后,奇妙的事情会发生. 当我报了这个专业,開始认真的写程序,在这个领域学习的时候,却发现非常多干这一行 的都自称"码农" ...

  3. leetcode第一刷_Unique Paths

    从左上到右下,仅仅能向右或向下,问一共同拥有多少种走法. 这个问题当然能够用递归和dp来做,递归的问题是非常可能会超时,dp的问题是须要额外空间. 事实上没有其它限制条件的话,这个问题有个非常easy ...

  4. DHTML【10】--Javascript

    大家好,这一节主要介绍Javascript的函数.函数是Javascript的核心中的核心,这么强调一点都不过分,相信没有人反对,如果有人反对,你以后可以不用函数,呵呵,说的有点绝了啊. 下面看一下J ...

  5. 属性“dataProvider”有多个初始值设定项。(注意:“dataProvider”是“mx.charts.BarChart”的默认属性)。

    1.错误描写叙述 属性"dataProvider"有多个初始值设定项.(注意:"dataProvider"是"mx.charts.BarChart&q ...

  6. A Game of Thrones(8) - Bran

    The hunt left at dawn. The king wanted wild boar at the feast tonight. Prince Joffrey rode with his ...

  7. Android消息推送(二)--基于MQTT协议实现的推送功能

    国内的Android设备,不能稳定的使用Google GCM(Google Cloud Messageing)消息推送服务. 1. 国内的Android设备,基本上从操作系统底层开始就去掉了Googl ...

  8. Learning React Native笔记

    React Native作为一个新事物,相关的资料还不多 官方的文档比较简单,缺少一些系统的例子 在对React Native的应用中,迫切的想学习一些别人的最佳实践.所以想通过看书系统的学习下 之前 ...

  9. SWT中Display和Shell是个什么东东

    Display:与操作系统沟通的桥梁 我们在前面说过,每个swt程序在最开始都必须创建一个Display对象.Display对象起什么作用呢?它是swt与操作系统沟通的一座桥梁.它负责swt和操作系统 ...

  10. jenkins 安装 SVN Publisher 后向 svn 提交代码报错: E170001: Authentication required for...

    问题描写叙述 安装并启动 jenkins 后,加入了 SVN Publisher 插件,然后在构建任务的"构建后操作"操作中加入了"Publish to Subversi ...