struct TreeNode{

int val;

TreeNode* left;

TreeNode* right;

TreeNode(int val):val(val),left(NULL),right(NULL){}

};

Not all binary trees are binary search trees.

4.1 Implement a function to check if a tree is balanced. For the purposes of this question, a balanced tree is defined to be a tree such that no two leaf nodes differ in distance from the root by more than one.

Calculate all node's two leaf by recursion, in each recursion, judge its two leaf nodes differ is more than one or not. -1 represents no balanced, and >=0 represents balanced.

int depthAndCheck(TreeNode *root){

if(root==NULL)return 0;

else{

int leftD = depthAndCheck(root->left);

int rightD = depthAndCheck(root->right);

if(leftD==-1||rightD==-1)return -1; //find one node no balanced,then the tree is no balanced.

if(leftD-rightD<=-2||leftD-rightD>=2)return -1; //judge its two children.

return max(leftD,rightD)+1;

}

}

4.2 Given a directed graph, design an algorithm to find out whether there is a route between two nodes.

struct GraphNode{

int val; //value

vector<GraphNode*> next; //directed to nodes

};

Here, two nodes are A and B, we breadth first search the graph at the beginning of A to see whether there is a route from A to B, then breadth first search at the beginning of B to see whether there is a route from B to
A. We declare a set<GraphNode*> to record whether the Node is visited.

bool isHaveRoute(GraphNode *A,GraphNode *B){

if(A==B)return true;

set<GraphNode*>  visited;

list<GraphNode*>  array[2];

int cur=0,pre=1;

array[0].push(A);visited.insert(A);

while(!array[cur].empty()){

cur=!cur;pre=!pre;

array[cur].clear();

while(!array[pre].empty()){

for(int i=0;i<array[pre].front()->next.size();i++){

if(visited.count(array[pre].front()->next[i])==0){

if(array[pre].front()->next[i]==B)return true;

array[cur].push(array[pre].front()->next[i]);

visited.insert(array[pre].front()->next[i]);

}

}

array[pre].pop_front();

}

}

return false;

}

bool isHaveRouteAB(GraphNode *A,GraphNode *B){

if(isHaveRoute(A,B)||isHaveRoute(B,A))return true;

else return false;

}

4.3 Given a sorted (increasing order) array, write an algorithm to create a binary tree with minimal height.

I think the problem is to create a binary search tree with minimal height.

The left child is smaller than the parent and the right child is bigger than the parent. So, we can find the middle of the array, and divide this array to two part, the left part is the left child part of the middle and
the right part is the right child part.

TreeNode* binaryST(int a[],int left,int right){

if(left>right)return NULL;

int mid=left+(right-left)/2;

TreeNode *parent = new TreeNode(a[mid]);

parent->left = binaryST(a,left,mid-1);

parent->right = binaryST(a,mid+1,right);

return parent;

}

TreeNode *resBST(int a[],int n){

if(n<=0)return NULL;

return binaryST(a,0,n-1);

}

4.4 Given a binary search tree, design an algorithm which creates a linked list of all the nodes at each depth (i e , if you have a tree with depth D, you’ll have D linked lists).

BFS,like 4.2.

4.5 Write an algorithm to find the ‘next’ node (i e , in-order successor) of a given node in a binary search tree where each node has a link to its parent.

in-order, first, read the node's left, then the node, the the node's right.

When the node has right child, the successor will be the left-most child of it's right child part.

When the node is a left child,its parent is its successor.

When the node is a right child, traverse its parents until we find a parent that the node is in the left child part of this parent. This parent is the node's successor.

TreeNode* findNextNode(TreeNode* root){

if(root!=NULL)

if(root->parent==NULL||root->right!=NULL){

return findLeftMostChild(root->right);

}else{

while(root->parent){

if(root->parent->left==root)break;

root=root->parent;

}

return root->parent;

}

}

return NULL;

}

TreeNode* findLeftMostChild(TreeNode* root){

if(root==NULL)return NULL;

if(root->left)root=root->left;

return root;

}

4.6 Design an algorithm and write code to find the first common ancestor of two nodes in a binary tree.Avoid storing additional nodes in a data structure NOTE: This is not necessarily a binary search tree.

4.7 You have two very large binary trees: T1, with millions of nodes, and T2, with hundreds of nodes Create an algorithm to decide if T2 is a subtree of T1.

we traverse T1 to find a node that equal to T2's root, then compare T1 and T2 to find whether T2 is a subtree of T1.

bool isSubTree(TreeNode* T1,TreeNode* T2){

if(T2==NULL)return true;

if(T1==NULL)return false;

if(T1->val==T2->val){

if(isMatch(T1,T2))return true;

}

return isSubTree(T1->left,T2)||isSubTree(T1->right,T2);

}

bool isMatch(TreeNode* T1,TreeNode *T2){

if(T1==NULL&&T2==NULL)return true;

if(T1==NULL||T2==NULL)return false;

if(T1->val!=T2->val)return false;

return isMatch(T1->left,T2->left)&&isMatch(T1->right,T2->right);

}

4.8 You are given a binary tree in which each node contains a value. Design an algorithm to print all paths which sum up to that value. Note that it can be any path in the tree - it does not have to start at the root.

we declare a vector<int> to store one path from root to current node, and traverse this vector to find a path that sum up to the value.

void traverseAllPaths(TreeNode* root,int num,vector<int> buffer,int level){

if(root==NULL)return;

buffer.push_back(root->val);

int temp=num;

for(int i=level;i>=0;i--){

temp-=buffer[i];

if(temp==0)printfPath(buffer,i,level);

}

vector<int> bufferL,bufferR;

for(int i=0;i<buffer.size();i++){

bufferL.push_back(buffer[i]);

bufferR.push_back(buffer[i]);

}

traverseAllPaths(root->left,num,bufferL,level+1);

traverseAllPaths(root->right,num,bufferR,level+1);

}

void printfPath(vector<int> buffer,int begin,int end){

for(int i=begin;i<=end;i++)printf("%d ",buffer[i]);

printf("\n");

}

CareerCup Chapter 4 Trees and Graphs的更多相关文章

  1. Cracking the Coding Interview(Trees and Graphs)

    Cracking the Coding Interview(Trees and Graphs) 树和图的训练平时相对很少,还是要加强训练一些树和图的基础算法.自己对树节点的设计应该不是很合理,多多少少 ...

  2. 【CareerCup】Trees and Graphs—Q4.3

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/24744177     题目: Given a sorted (increasing ord ...

  3. Chp4: Trees and Graphs

    1.Type of Tree 1. Binary Tree: a binary tree is a tree in which each node has at most two child node ...

  4. Careercup | Chapter 1

    1.1 Implement an algorithm to determine if a string has all unique characters. What if you cannot us ...

  5. Careercup | Chapter 4

    二叉查换树,左孩子小于等于根,右孩子大于根. 完全二叉树,除最后一层外,每一层上的节点数均达到最大值:在最后一层上只缺少右边的若干结点. complete binary tree 满二叉树,完美二叉树 ...

  6. Careercup | Chapter 3

    3.1 Describe how you could use a single array to implement three stacks. Flexible Divisions的方案,当某个栈满 ...

  7. Careercup | Chapter 2

    链表的题里面,快慢指针.双指针用得很多. 2.1 Write code to remove duplicates from an unsorted linked list.FOLLOW UPHow w ...

  8. Careercup | Chapter 8

    8.2 Imagine you have a call center with three levels of employees: respondent, manager, and director ...

  9. Careercup | Chapter 7

    7.4 Write methods to implement the multiply, subtract, and divide operations for integers. Use only ...

随机推荐

  1. BroadcastReceiver总结

    一.工程整体图 二.activity_main.xml <LinearLayout xmlns:android="http://schemas.android.com/apk/res/ ...

  2. hdu 5056Boring count

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=5056 题目大意:就是问在子串中每一个小写字母出现次数不超过k次的个数,注意子串是连续的子串.. . ...

  3. VB.NET版机房收费系统---导出Excel表格

    datagridview,翻译成中文的意思是数据表格显示,使用DataGridView控件,能够显示和编辑来自不同类型的数据源的表格,将数据绑定到DataGridView控件很easy和直观,大多数情 ...

  4. SE 2014年5月25日

    如图配置 两实验 R1模拟总部,R2 与R3模拟分部 实验一  要求使用 IPSec VPN 主模式,使得总部与两分部内网可相互通讯 步骤: 1.  配置默认路由 [RT1]ip route-stat ...

  5. cocoapod安装失败解决

    cocoapods 是 iOS 上不错的包依赖管理软件,在前面的文章里衣服自己洗是有做简单的介绍.最近在学习iOS开发,中间碰到安装cocoapods一些问题,具体的安装教程网上非常多,大家搜一下久可 ...

  6. 为智能硬件提供一站式解决方案——机智云GoKit评测

    为智能硬件提供一站式解决方案——机智云GoKit评测 2014年12月24日 作者: ladouyu 3 17,414+ 4 EMW3162GoKit开发板STM32F103智能硬件机智云2.0 从物 ...

  7. Spring IOC及AOP学习总结

    一.Spring IOC体系学习总结: Spring中有两个容器体系,一类是BeanFactory.还有一类是ApplicationContext.BeanFactory提供了基础的容器功能.Appl ...

  8. Hadoop-2.4.0安装和wordcount执行验证

    Hadoop-2.4.0安装和wordcount执行验证 下面描写叙述了64位centos6.5机器下,安装32位hadoop-2.4.0,并通过执行 系统自带的WordCount样例来验证服务正确性 ...

  9. Oracle自增列创建方法

    最近在做Oracle的项目,由于以前没有接触过Oracle的开发,遇到了不少的问题,比如给Oracle表添加自增列,与SQL Server就不同. Oracle没有自增字段这样的功能,但是通过触发器( ...

  10. Nginx将请求分发到各web应用

    介绍了VMWare12虚拟机.Linux(CentOS7)系统安装.部署Nginx1.6.3代理服务做负载均衡.接下来介绍通过Nginx将请求分发到各web应用处理服务. 一.Web应用开发 1.as ...