K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

算法流程:

  1. 准备数据,对数据进行预处理
  2. 选用合适的数据结构存储训练数据和测试元组
  3. 设定参数,如k
  4.维护一个大小为k的的按距离由大到小的优先级队列,用于存储最近邻训练元组。随机从训练元组中选取k个元组作为初始的最近邻元组,分别计算测试元组到这k个元组的距离,将训练元组标号和距离存入优先级队列
  5. 遍历训练元组集,计算当前训练元组与测试元组的距离,将所得距离L 与优先级队列中的最大距离Lmax
  6. 进行比较。若L>=Lmax,则舍弃该元组,遍历下一个元组。若L < Lmax,删除优先级队列中最大距离的元组,将当前训练元组存入优先级队列。
  7. 遍历完毕,计算优先级队列中k 个元组的多数类,并将其作为测试元组的类别。
  8. 测试元组集测试完毕后计算误差率,继续设定不同的k值重新进行训练,最后取误差率最小的k 值。
主要代码:
     使用优先级队列求距离最近的近邻。

/**
* 小顶堆求topN
*/
public class MinHeapPriorityQueue<T extends Comparable<T>> {
private PriorityQueue<T> queue;
private int maxSize; /**
* @param maxSize
*/
public MinHeapPriorityQueue(int maxSize) {
this(maxSize, new Comparator<T>() {
@Override
public int compare(T o1, T o2) {
return o1.compareTo(o2);
}
});
} public MinHeapPriorityQueue(int maxSize, Comparator<T> comparator) {
this.maxSize = maxSize;
this.queue = new PriorityQueue<>(maxSize, comparator);
} public synchronized void insert(T t) {
if (queue.size() < maxSize) {
queue.add(t);
} else {
T tmp = queue.peek();
if (t.compareTo(tmp) > 0) {
queue.poll();
queue.add(t);
}
}
} public synchronized List<T> sortList() {
List<T> list = new LinkedList<>(queue);
Collections.sort(list, new Comparator<T>() {
@Override
public int compare(T o1, T o2) {
return o2.compareTo(o1);
}
});
return list;
} public synchronized List<T> getList(){
List<T> list = new LinkedList<>(queue);
return list;
} public static double format(double d, int n) {
double p = Math.pow(10, n);
return Math.round(d * p) / p;
} public static void main(String[] args) {
MinHeapPriorityQueue<Double> queue = new MinHeapPriorityQueue<>(3);
Random r = new Random();
StringBuffer buf = new StringBuffer();
for (int i = 0; i < 20; i++) {
double rd = format(r.nextDouble(), 3);
queue.insert(rd);
buf.append(rd);
if (i != 19)
buf.append(", ");
}
System.out.println("buff: " + buf.toString());
System.out.println("list: " + queue.sortList());
}
}

knn算法实现:

public class KNN {

    public String knn(List<List<Double>> datas, List<Double> testData, int k) {
MinHeapPriorityQueue queue = new MinHeapPriorityQueue(k);
for (int i = 0; i < datas.size(); i++) {
List<Double> t = datas.get(i);
double distance = calDistance(t, testData);
queue.insert(new TrainTuple(i, distance, t.get(t.size() - 1).toString()));
}
return getMostClass(queue);
} /**
* 计算测试数据和训练数据元组的距离
*
* @param trainData
* @param testData
* @return
*/
private double calDistance(List<Double> trainData, List<Double> testData) {
double sum = 0d;
double distance = 0d;
for (int i = 0; i < trainData.size() - 1 ; i++) {
sum += (trainData.get(i) - testData.get(i)) * (trainData.get(i) - testData.get(i));
}
distance = Math.sqrt(sum);
return distance;
} /**
* 获取所得到的k个最近邻元组的多数类别
*
* @param queue
* @return 多数类别名称
*/
private String getMostClass(MinHeapPriorityQueue queue) {
Map<String, Integer> classCountMap = new HashMap<>();
List<TrainTuple> arrayList = queue.getList();
for (int i = 0; i < arrayList.size(); i++) {
TrainTuple tuple = arrayList.get(i);
String classify = tuple.getClassify();
if(classCountMap.containsKey(classify)){
classCountMap.put(tuple.getClassify(),classCountMap.get(classify) + 1);
}else{
classCountMap.put(classify,1);
}
}
int maxIndex = -1;
int maxCount = 0;
Object[] classes = classCountMap.keySet().toArray();
for (int i = 0; i < classes.length; i++) {
if (classCountMap.get(classes[i]) > maxCount) {
maxIndex = i;
maxCount = classCountMap.get(classes[i]);
}
}
return classes[maxIndex].toString();
} }

具体的代码实现可以参考:https://github.com/yl897958450/knn

转载请注明出处。

knn分类算法学习的更多相关文章

  1. 机器学习---K最近邻(k-Nearest Neighbour,KNN)分类算法

    K最近邻(k-Nearest Neighbour,KNN)分类算法 1.K最近邻(k-Nearest Neighbour,KNN) K最近邻(k-Nearest Neighbour,KNN)分类算法, ...

  2. KNN分类算法实现手写数字识别

    需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有20 ...

  3. KNN分类算法及python代码实现

    KNN分类算法(先验数据中就有类别之分,未知的数据会被归类为之前类别中的某一类!) 1.KNN介绍 K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法. 机器学习, ...

  4. 后端程序员之路 12、K最近邻(k-Nearest Neighbour,KNN)分类算法

    K最近邻(k-Nearest Neighbour,KNN)分类算法,是最简单的机器学习算法之一.由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重 ...

  5. KNN分类算法

    K邻近算法.K最近邻算法.KNN算法(k-Nearest Neighbour algorithm):是数据挖掘分类技术中最简单的方法之一 KNN的工作原理 所谓K最近邻,就是k个最近的邻居的意思,说的 ...

  6. 在Ignite中使用k-最近邻(k-NN)分类算法

    在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另一个机器学习算法,即k-最近邻(k-NN)分类.该算法基于对象k个最近邻中最常见的类来对对象进行分类,可用于确定类成员的关系 ...

  7. KNN分类算法--python实现

    一.kNN算法分析 K最近邻(k-Nearest Neighbor,KNN)分类算法可以说是最简单的机器学习算法了.它采用测量不同特征值之间的距离方法进行分类.它的思想很简单:如果一个样本在特征空间中 ...

  8. OpenCV——KNN分类算法 <摘>

    KNN近邻分类法(k-Nearest Neighbor)是一个理论上比较成熟的方法,也是最简单的机器学习算法之一. 这个算法首先贮藏所有的训练样本,然后通过分析(包括选举,计算加权和等方式)一个新样本 ...

  9. KNN分类算法补充

    KNN补充: 1.K值设定为多大? k太小,分类结果易受噪声点影响:k太大,近邻中又可能包含太多的其它类别的点. (对距离加权,可以降低k值设定的影响) k值通常是采用交叉检验来确定(以k=1为基准) ...

随机推荐

  1. SpecFlow - Cucumber for .NET

    SpecFlow使用入门 SpecFlow是一个BDD工具,在这里对BDD不多赘述,你可以阅读一下微软2010年十二月的一篇文章,此外如果你想要更多了解SpecFlow,可以参考我的另一篇翻译(当然, ...

  2. C# 通过扩展WebBrowser捕获网络连接错误信息

    想捕获WebBrowser连接指定网站过程中发生的错误信息,包括网络无法连接.404找不到网页等等错误!经过网上的搜集,找到了以下解决方案,该解决方案不会在网站连接前发出多余的测试请求. 向Webbr ...

  3. 水晶报表使用经验谈--使用sql语句直接生成dataset做为报表的数据源

    概述: 上一次自己做了直接在rpt文件里使用oledb连接使用数据库的方法 但是不是很灵活 这次做了使用sql语句直接生成dataset做为报表的数据源(即push模式),这样就可以接受参数了.当然报 ...

  4. BackgroundWorker组件使用总结

    首先在窗体拖入一个BackgroundWorker组件,根据功能需要设置BackgroundWorker的属性 WorkerSupportsCancellation = true; 允许取消后台正在执 ...

  5. Codeforces 10D LCIS 找出最长公共子和产量增加这个序列 dp

    主题链接:点击打开链接 意甲冠军: 特定n长序列 给定k长序列 求LCIS并输出这个子序列 如有多解输出随意解.. = - = 敲的时候听着小曲儿pre的含义还没有想清楚,万万没想到就过了... #i ...

  6. 老调重弹--面向对象设计原则--GRASP设计原则

    GRASP概述 GRASP,全称General Responsibility Assignment Software Patterns,译为”通用职责分配软件原则“,包含以下原则和模式 控制器(Con ...

  7. CSS3中文手册基础知识

    CSS3手册是学习CSS3的最佳文档,不管是自己写博客,还是买书,手册少不了.今天我给大家介绍一些CSS3有哪些分类及其使用. 具体参考:http://caibaojian.com/css3/ 上来进 ...

  8. ajax的post请求

    get和post是http请求方法最主要的两种方式. post: 来个例子test.html <!doctype html> <html lang="en"> ...

  9. 入门 ASP.NET Web API 2 (C#)

    入门 ASP.NET Web API 2 (C#) HTTP 不只是为了生成 web 页面.它也是一个强大的建设公开服务和数据 Api的平台. HTTP 的特性:简单. 灵活和无处不在.你能想到的几乎 ...

  10. Memcached在.Net中的基本操作

    Memcached在.Net中的基本操作 一.Memcached ClientLib For .Net 首先,不得不说,许多语言都实现了连接Memcached的客户端,其中以Perl.PHP为主. 仅 ...