“机器学习/深度学习方法“系列,我本着开放与共享(open and share)的精神撰写,目的是让很多其它的人了解机器学习的概念,理解其原理,学会应用。如今网上各种技术类文章非常多,不乏大牛的精辟见解,但也有非常多滥竽充数、误导读者的。这个系列对教课书籍和网络资源进行汇总、理解与整理,力求一击中的,通俗易懂。机器学习非常难,是由于她有非常扎实的理论基础,复杂的公式推导;机器学习也非常easy,是由于对她不甚了解的人也能够轻易使用。我希望好好地梳理一些基础方法模型,输出一些真正有长期參考价值的内容,让很多其它的人了解机器学习。所以对自己的要求有三:(1)不瞎写,有理有据;(2)尽量写的通俗易懂;(3)多看多想,深入浅出。

本人14年博士毕业于浙大计算机系,希望与志同道合的朋友一起交流,我设立了了一个技术交流QQ群:433250724,欢迎对算法、技术、应用感兴趣的同学增加,在交流中拉通——算法与技术,让理论研究与实际应用深度融合;也希望能有大牛能来,为大家解惑授业,福泽大众。推广开放与共享的精神。假设人多我就组织一些读书会,线下交流。(如今人不多,无论做什么方向的大家都能够多多交流,希望有很多其它的人能够来讨论。)

————————————————————————————————————————————

眼下已经整理了的系列文章:

  1. 机器学习方法:回归(一):线性回归linear regression
  2. 机器学习方法:回归(二):回归、稀疏与正则约束ridge regression,Lasso
  3. 机器学习方法:回归(三):最小角回归Least Angle Regression,forward stagewise
    selection
  4. 机器学习方法(四):决策树decision tree原理与实现trick
  5. 机器学习方法(五):逻辑回归Logistic
    Regression,Softmax Regression







————————————————————————————————————————————

眼下想到的有这些topic,我就抽工作业余时间慢慢复习,慢慢写

content: 

linear regression, Ridge, Lasso 

LARS

Logistic Regression, Softmax 

Kmeans, GMM, EM, Spectral Clustering

Dimensionality Reduction: PCA、LDA、Laplacian
Eigenmap、 LLE、 Isomap(改动前面的blog) 

SVM 

Decision Tree: ID3、C4.5 

Apriori,FP

优化方法:BFGS method,SGD,Conjugate gradient,Coordinate
descent等

PageRank

minHash, LSH, Hashing

Manifold Ranking,EMR(这种方法是我博士期间论文发表的)

PLSA,LDA

Deep Learning Basics:

MLP

RBM

CNN

AutoEncoder,DAE,SAE

RNN

还有非常多其它的

待补充 

关于”机器学习方法“,"深度学习方法"系列的更多相关文章

  1. AI从业者需要应用的10种深度学习方法

    https://zhuanlan.zhihu.com/p/43636528 https://zhuanlan.zhihu.com/p/43734896 摘要:想要了解人工智能,不知道这十种深度学习方法 ...

  2. SLAM会被深度学习方法取代吗?

    日益感觉到自己对深度学习的理解比较肤浅,这段且当做是以前的认识. 上上周去围观了泡泡机器人和AR酱联合举办的论坛.在圆桌阶段,章国峰老师提了一个问题:SLAM会被深度学习方法取代吗?这是一个很有趣的话 ...

  3. 深度学习方法(十一):卷积神经网络结构变化——Google Inception V1-V4,Xception(depthwise convolution)

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 上一篇讲了深度学习方法(十) ...

  4. 深度学习方法(九):自然语言处理中的Attention Model注意力模型

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.NET/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 上一篇博文深度学习方法(八):Enc ...

  5. 深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks

    上一篇我们介绍了:深度学习方法(十二):卷积神经网络结构变化--Spatial Transformer Networks,STN创造性地在CNN结构中装入了一个可学习的仿射变换,目的是增加CNN的旋转 ...

  6. 深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构 ...

  7. 深度学习实践系列(2)- 搭建notMNIST的深度神经网络

    如果你希望系统性的了解神经网络,请参考零基础入门深度学习系列,下面我会粗略的介绍一下本文中实现神经网络需要了解的知识. 什么是深度神经网络? 神经网络包含三层:输入层(X).隐藏层和输出层:f(x) ...

  8. 深度学习实践系列(3)- 使用Keras搭建notMNIST的神经网络

    前期回顾: 深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型 深度学习实践系列(2)- 搭建notMNIST的深度神经网络 在第二篇系列中,我们使用了TensorFlow搭建了第一个深度 ...

  9. 深度学习基础系列(九)| Dropout VS Batch Normalization? 是时候放弃Dropout了

    Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生.但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层.本文将首 ...

随机推荐

  1. 《Qt on Android核心编程》夹

    china-pub在售前,售中环节退房,折扣低! 有朋友想看看<Qt on Android核心编程>的文件夹,So-- 文件夹     <Qt on Android核心编程>文 ...

  2. 使用commons-fileupload进行上传

    须要使用的包 这两个包在Apache官网上能够下载得到 commons-fileupload-1.3.1.jar是Apache的一个开源项目.废话不说直接说吧 前段页面 <form action ...

  3. 数据结构 - 双链表(C++)

    // ------DoublyLinkedList.h------ template <class T> class DNode { private: // 指向左.右结点的指针 DNod ...

  4. UVA 1291 Dance Dance Revolution(DP)

    意甲冠军:跳舞机有一个上5积分,分别central, top, bottom, left, right分,区区足站立还是需要1点物理,从一个单纯的脚central点上须要2点体力,从一个点上移动到相邻 ...

  5. c++学籍管理系统

    程序在编译时出错(vc++ 6.0) 求哪位大神帮忙改改 #include<iostream> #include <string> #include<conio.h> ...

  6. 创建高性能移动 web 站点【转载】

    如果你的网站3秒钟没有响应,人们就会失去兴趣了.为了满足响应快这个愿望,需要一个不同的方法在手机上进行分析,设计和测试. 这篇文章将会对Johan Johansson在2013年4月提出"  ...

  7. 第一篇——第一文 SQL Server 备份基础

    原文:第一篇--第一文 SQL Server 备份基础 当看这篇文章之前,请先给你的所有重要的库做一次完整数据库备份.下面正式开始备份还原的旅程. 原文出处: http://blog.csdn.net ...

  8. IOS应用上传须要做的工作

    苹果开发人员   https://developer.apple.com/ 证书创建流程 certificates (证书): 是电脑可以增加开发人员计划的凭证 证书分为:开发证书和公布(产品)证书, ...

  9. CSDN Androidclient生产 导航帖

    弄个导航棒.的相关知识汇总. CSDN Android的client的效果图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbG1qNjIzNTY1Nzk ...

  10. CodeForces 396C 树状数组 + DFS

    本主题开始看到以为段树或树状数组,但是,对于一个节点的有疑问的所有子节点的加权,这一条件被视为树的根,像 然后1号是肯定在第一层中,然后建立一个单向侧倒查,然后记录下来 其中每个节点 层,终于 两个节 ...