Acwing P277 饼干 题解
每日一题 day20 打卡
Analysis
线型动态规划
读入每个人的贪婪度之后,对其按照从大到小的顺序排序,定义状态f[i][j]为前i个人(排序后)分j个饼干的答案,那么答案为f[n][m],考虑状态转移方程。
1、若给第i个人的饼干数大于1 ,那么我们将这i个人的饼干数都减1(总共减n),他们的怨气值是不会改变的,因而这种情况下,f[i][j]=f[i][j-i].
2、若给第i个人的饼干数等于1,那么我们枚举一个k(0≤k<i),表示从k之后一直到i所有的人的饼干数都是1,那么f[i][j]=f[k][j-(i-k)]+k*∑g[c[p]] (k<p<=i).
我们先预处理出g数组的前缀和,即可实现O(n)的转移。
综上,我们在两种决策中取最优即可。另外,本题要求输出方案,我们只需在状态转移时记录每个状态的前驱即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
#define maxn 30+10
#define maxm 5000+10
using namespace std;
inline int read()
{
int x=;
bool f=;
char c=getchar();
for(; !isdigit(c); c=getchar()) if(c=='-') f=;
for(; isdigit(c); c=getchar()) x=(x<<)+(x<<)+c-'';
if(f) return x;
return -x;
}
inline void write(int x)
{
if(x<){putchar('-');x=-x;}
if(x>)write(x/);
putchar(x%+'');
}
int n,m;
int g[maxn],num[maxn],sum[maxn],ans[maxn];
int a[maxn][maxm],b[maxn][maxm],dp[maxn][maxm];
inline bool cmp(int x,int y)
{
return g[x]>g[y];
}
inline void fig(int x,int y)
{
if(!x) return;
fig(a[x][y],b[x][y]);
if(a[x][y]==x)
{
for(int i=;i<=x;i++) ans[num[i]]++;
}
}
signed main()
{
memset(dp,,sizeof(dp));
n=read();m=read();
for(int i=;i<=n;i++)
{
g[i]=read();
num[i]=i;
}
sort(num+,num+n+,cmp);
for(int i=;i<=n;i++) ans[num[i]]=;
for(int i=;i<=n;i++) sum[i]=sum[i-]+g[num[i]];
dp[][]=;
for(int i=;i<=n;i++)
{
for(int j=i;j<=m;j++)
{
dp[i][j]=dp[i][j-i];
a[i][j]=i;
b[i][j]=j-i;
for(int k=;k<i;k++)
{
if(dp[i][j]>dp[k][j-(i-k)]+k*(sum[i]-sum[k]))
{
dp[i][j]=dp[k][j-(i-k)]+k*(sum[i]-sum[k]);
a[i][j]=k;
b[i][j]=j-(i-k);
}
}
}
}
write(dp[n][m]);
printf("\n");
fig(n,m);
for(int i=;i<=n;i++)
{
write(ans[i]);
printf(" ");
}
return ;
}
请各位大佬斧正(反正我不认识斧正是什么意思)
Acwing P277 饼干 题解的更多相关文章
- Acwing P283 多边形 题解
Analysis 总体来说是一个区间DP 此题首先是一个环,要你进行删边操作,剩下的在经过运算得到一个最大值 注意事项: 1.删去一条边,剩下的构成一条线,相当于求此的最大值,经典区间DP该有的样子: ...
- Acwing P284 金字塔 题解
Analysis 一棵树的每颗子树都对应着这棵树 DFS 序的一个区间.本题的序列虽然不是 DFS 序列,但也有该性质.本题中,我们以区间长度作为阶段, F[ l , r ] 表示序列 s[ l ~ ...
- AcWing P379 捉迷藏 题解
Analysis 这道题因为我们要给能到达的两个点都连上,又由于n<=200,所以我们可以用n³的传递闭包来建边,再用匈牙利算法来求二分图最大点独立集. #include<iostream ...
- AcWing 走廊泼水节 题解
这道题大致题意就是让一棵树任意两点有连边(也就是完全图),但是补完后最小生成树是一开始的那棵树,问最小加的边权之和是多少. 了解题意后,我们可以想到用Kruskal(废话),当每两个集合合并的时候,除 ...
- csp-s 考前刷题记录
洛谷 P2615 神奇的幻方 洛谷 P2678 跳石头 洛谷 P1226 [模板]快速幂||取余运算 洛谷 P2661 信息传递 LOJ P10147 石子合并 LOJ P10148 能量项链 LOJ ...
- AcWing 785.快速排序
AcWing 785.快速排序题解 题目描述 给定你一个长度为n的整数数列. 请你使用快速排序对这个数列按照从小到大进行排序. 并将排好序的数列按顺序输出. 输入格式 输入共两行,第一行包含整数 n. ...
- Codeforces Round #530 (Div. 2) F 线段树 + 树形dp(自下往上)
https://codeforces.com/contest/1099/problem/F 题意 一颗n个节点的树上,每个点都有\(x[i]\)个饼干,然后在i节点上吃一个饼干的时间是\(t[i]\) ...
- 【题解】AcWing 110. 防晒(普及题)
[题解]AcWing 110. 防晒(普及题) AcWing 110. 防晒 你没有用过的全新OJ 嘿嘿水水题. 题目就是一维坐标轴上给定多个线段,给定多个点,点在线段上造成贡献,点可以重复,问最大贡 ...
- Acwing P288 休息时间 题解
Analysis 首先假设一天的第N小时与后一天的第一个小时不相连, 这种情况下DP转移比较好想 dp[i][j][0/1]dp[i][j][0/1]表示 考虑一天的前i个小时,已经休息了j小时,且第 ...
随机推荐
- Linux组管理、用户管理、查看用户信息、usermod、which、切换用户、修改文件具体权限
组管理 提示:创建组/删除组的终端命令都需要通过sudo执行 序号 命令 作用 01 groupadd组名 添加组 02 groupdel组名 删除组 03 cat/etc/group 确认组信息 0 ...
- flink linux安装 单机版
1.下载二进制的Flink,根据你喜欢的Hadoop/Scala版本选择对应的Flink版本. https://flink.apache.org/downloads.html2.选择存放目录 解压 f ...
- tomcat线程池调优
之前项目一直在tomcat下开发,后来在上线之前,需要进行性能安全测试,可是测试的同事反应,登陆口线程并发一多的时候,系统立马就没法登陆了. 中间件是tomcat6. tomcat的日志总是简洁的很 ...
- FreeMarker 教程整理
Freemarker新手教程 http://blog.csdn.net/qq_23994787/article/details/77506980 FreeMarker教程整理 http://blo ...
- php-sql-server-2017
Download the Microsoft Drivers for PHP for SQL Server https://docs.microsoft.com/en-us/sql/connect/p ...
- 页面、 ajax 、mock
页面1: //html <form action = "" method="post" name="loginForm"> & ...
- Java 之 方法引用
方法引用 一.冗余的Lambda场景 来看一个简单的函数式接口以应用Lambda表达式: @FunctionalInterface public interface Printable { void ...
- asp.net代码审计起始篇之系统搭建
最近开始学习asp.net的代码审计,在开始审计之前除了要对语言有些基本的了解,还需要会在本地搭建demo网站方便调试和复现漏洞 准备工作:操作系统:我用的是win10 数据库:我用的sql serv ...
- ES5_对象 与 继承
1. 对象的定义 //定义对象 function User(){ //在构造方法中定义属性 this.name = '张三'; this.age = 12; //在构造方法中定义方法: this.ru ...
- TP5框架模块绑定二级域名
application\config.php 修改 url_domain_deploy 为 true 'url_domain_deploy' => true application\route. ...