leetcode动态规划笔记一---一维DP
动态规划
刷题方法
告别动态规划,连刷 40 道题,我总结了这些套路,看不懂你打我 - 知乎
北美算法面试的题目分类,按类型和规律刷题
九章的DP分类
九章DP分类
重点250
题目分类
一维dp
- House Robber : 求最大最小值
- House Robber II: 求最大最小值
- House Robber III: 求最大最小值
- Decode Ways : 求方法总数
- Word Break : 求是否可行
- Maximum Product Subarray : 求最大最小值
- Ugly Number II : 这道题不太像是dp
- Is Subsquence :求是否可行
- 413. Arithmetic Slices :求总数
House Robber : 一维dp
方法一:自定向下 + memo
- 这种方法是从问题整体出发,向子问题方向分解求值,同时将子问题结果缓存下来。
- 一般来说这种方法在分析出,子问题与父问题关系后,能直接想到。
- 注:如果去掉memo,那就是递归解问题的方法了,可以用在子问题解不重叠的场景。
class Solution {
Map<Integer,Integer> m = new HashMap<>();
int helper(int[] nums, int right){
if(m.containsKey(right)){
return m.get(right);
}
if(right == 0){
m.put(right, nums[0]);
return nums[0];
}
else if(right == 1){
int i = Math.max(nums[0], nums[1]);
m.put(right, i);
return i;
}
int i = Math.max(helper(nums, right - 2) + nums[right], helper(nums, right-1));
m.put(right, i);
return i;
}
public int rob(int[] nums) {
if(nums.length == 0) return 0;
return helper(nums, nums.length - 1);
}
}
方法二:自底向上 + memo
- 由小问题向大问题推导,这个思路就必须有memo缓存了,不过可以考虑进一步优化缓存.
- 这个效率已经要比方法一快了.
class Solution {
public int rob(int[] nums) {
if(nums.length == 0) return 0;
int[] memo = new int[nums.length];
for(int i=0; i<nums.length; i++){
if(i == 0 ) memo[i] = nums[i];
else if(i == 1){
memo[i] = Math.max(nums[0], nums[1]);
}
else{
memo[i] = Math.max(memo[i-1], memo[i-2] + nums[i]);
}
}
return memo[nums.length - 1];
}
}
方法三:自底向上 + memo optimised
class Solution {
public int rob(int[] nums) {
if(nums.length == 0) return 0;
if(nums.length == 1) return nums[0];
int n_1 = nums[0], n_2 = 0;
for(int i=1; i<nums.length; i++){
int t = Math.max(n_1, n_2 + nums[i]);
n_2 = n_1; n_1 = t;
}
return n_1;
}
}
House Robber II : 一维dp
方法:同上
class Solution {
public int rob(int[] nums) {
if(nums.length == 0) return 0;
if(nums.length == 1) return nums[0];
if(nums.length == 2) return Math.max(nums[0], nums[1]);
int x = 0;
// 1. drop the last num
int n2 = nums[0], n1 = Math.max(nums[0], nums[1]);
for(int i = 2; i < nums.length -1; i ++){
int t = Math.max(n2 + nums[i], n1);
n2 = n1;
n1 = t;
}
x = n1;
n2 = 0;
n1 = nums[1];
for(int i = 2; i < nums.length; i ++){
int t = Math.max(n2 + nums[i], n1);
n2 = n1;
n1 = t;
}
return Math.max(x, n1);
}
}
House Robber III:一维DP
方法一: 自顶向下 + memo
这种方式写起来容易出错,效率也比较低
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
Map<TreeNode, Integer> m = new HashMap<TreeNode, Integer>();
Map<TreeNode, Integer> m2 = new HashMap<TreeNode, Integer>();
int helper(TreeNode t, boolean parentUsed){
if(t == null) return 0;
if(parentUsed){
if(m.containsKey(t)){
return m.get(t);
}
int x = helper(t.left, false) + helper(t.right, false);
m.put(t, x);
return x;
}
else{
if(m2.containsKey(t)){
return m2.get(t);
}
int notUse = helper(t.left, false) + helper(t.right, false);
int use = t.val + helper(t.left, true) + helper(t.right, true);
int x = Math.max(use, notUse);
m2.put(t, x);
return x;
}
}
public int rob(TreeNode root) {
if(root == null) return 0;
return Math.max(root.val +
helper(root.left, true) + helper(root.right,true),
helper(root.left, false) + helper(root.right, false));
}
}
方法二:自顶向下 + memo
虽然也是自顶向下,下面的方法就简洁很多;特别注意标important那行容易出错
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
int[] helper(TreeNode t){
int[] re = new int[2];
if(null == t){
re[0] = 0;
re[1] = 0;
return re;
}
int[] left = helper(t.left);
int[] right = helper(t.right);
re[0] = t.val + left[1] + right[1];
re[1] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]); // important
return re;
}
public int rob(TreeNode root) {
if(root == null) return 0;
int[] re = helper(root);
return Math.max(re[0], re[1]);
}
}
Decode Ways : 一维DP,求方法总数
解法一: 自顶向下,递归 + no memo, time limit exceed
这道题真有点不太好想
class Solution {
int helper(char[] str, int right){
int sum1 = 0, sum2 = 0;
if(right < 0) return 1;
if(right == 0){
return (str[right] != '0') ? 1 : 0;
}
if(str[right] != '0'){
sum1 = helper(str, right-1);
}
if(str[right-1] != '0'){
Integer x = Integer.valueOf(new String(str, right - 1, 2));
if(x >= 1 && x <= 26){
sum2 = helper(str, right-2);
}
}
return sum1 + sum2;
}
public int numDecodings(String s) {
return helper(s.toCharArray(), s.length() - 1);
}
}
解法二: 自顶向下,递归 + memo
class Solution {
Map<Integer, Integer> m = new HashMap<>();
int helper(char[] str, int right){
int sum1 = 0, sum2 = 0;
if(m.containsKey(right)){
return m.get(right);
}
if(right < 0) return 1;
if(right == 0){
return (str[right] != '0') ? 1 : 0;
}
if(str[right] != '0'){
sum1 = helper(str, right-1);
}
if(str[right-1] != '0'){
Integer x = Integer.valueOf(new String(str, right - 1, 2));
if(x >= 1 && x <= 26){
sum2 = helper(str, right-2);
}
}
m.put(right, sum1+sum2);
return sum1 + sum2;
}
public int numDecodings(String s) {
return helper(s.toCharArray(), s.length() - 1);
}
}
方法三:自底向上 + 加 O(n) memo
class Solution {
public int numDecodings(String s) {
if(s.length() == 0 || s.charAt(0) == '0') return 0;
int[] memo = new int[s.length() + 1];
memo[0] = 1; memo[1] = 1;
char[] str = s.toCharArray();
for(int i=1; i<s.length(); i++){
int t1 = 0, t2 = 0;
if(str[i] != '0'){
t1 = memo[i];
}
if(str[i-1] != '0'){
Integer x = Integer.valueOf(new String(str, i-1, 2));
if(x >= 10 && x <= 26){
t2 = memo[i-1];
}
}
memo[i+1] = t1 + t2;
}
return memo[s.length()];
}
}
Word Break : 一维DP,求是否可行
方法一 : 自顶向下
递归 + memo
class Solution {
Map<Integer, Boolean> m = new HashMap<>();
boolean helper(char[] str, int right, Set<String> dict){
if(right >= str.length){
return true;
}
if(m.containsKey(right)){
return m.get(right);
}
for(int j = 1; j < str.length - right + 1; j++){
if(dict.contains(new String(str, right, j))){
if(helper(str, right + j, dict)){
return true;
}
}
}
m.put(right, false);
return false;
}
public boolean wordBreak(String s, List<String> wordDict) {
Set<String> dict = new HashSet<>();
for(String r : wordDict){
dict.add(r);
}
return helper(s.toCharArray(), 0, dict);
}
}
方法二:自底向上
递推 + memo
(ps:这道题并不像经典dp,它当前状态不仅依赖于上阶段的状态,而是依赖于过去所有阶段的状态,看看grandyang的解说)
class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
Set<String> dict = new HashSet<>();
int maxi = 0;
for(String r : wordDict){
dict.add(r);
maxi = Math.max(maxi, r.length());
}
char[] arr = s.toCharArray();
boolean[] can = new boolean[s.length() + 1];
can[0] = true;
for(int i = 0; i < s.length(); i++){
boolean c = false;
for(int j = i; j >= 0 && j >= (i - maxi); j--){ // j >= (i - maxi)是优化部分
if(can[j] && dict.contains(new String(arr, j, i+1 - j))){
c = true;break;
}
}
can[i+1] = c;
}
return can[s.length()];
}
}
Maximum Product Subarray : 求最大最小值
方法一 : 自底向上
递推 + memo
这道题稍微加了一个弯,因为有正负数,我们必须记录上一阶段求得的最大最小值,否则,就不能直接根据上一阶段的结果,直接推导本阶段值。
class Solution {
class Maxi{
int maxi;
int mini;
Maxi(){
maxi = 1;
mini = 1;
}
}
public int maxProduct(int[] nums) {
Maxi[] memo = new Maxi[nums.length + 1];
memo[0] = new Maxi();
for(int i=0; i<nums.length; i++){
memo[i+1] = new Maxi();
if(nums[i] > 0){
int x = Math.max(memo[i].maxi, memo[i].mini);
memo[i+1].maxi = (x > 0) ? x * nums[i] : nums[i];
int y = Math.min(memo[i].maxi, memo[i].mini);
memo[i+1].mini = (y <= 0) ? y * nums[i] : nums[i];
}
else if(nums[i] < 0){
int x = Math.min(memo[i].maxi, memo[i].mini);
memo[i+1].maxi = (x <= 0) ? x * nums[i] : nums[i];
int y = Math.max(memo[i].maxi, memo[i].mini);
memo[i+1].mini = (y > 0) ? y * nums[i] : nums[i];
}
else {
memo[i+1].maxi = memo[i+1].mini = 0;
}
}
int maxi = Integer.MIN_VALUE;
for(int i = 1; i < nums.length + 1; i++){
maxi = Math.max(maxi, memo[i].maxi);
}
return maxi;
}
}
Ugly Number II
方法一: 递推
这个解法的归并排序很经典
class Solution {
public int nthUglyNumber(int n) {
if(n <= 5) return n;
List<Integer> li = new ArrayList<>();
li.add(1);
int idx2 = 0;
int idx3 = 0;
int idx5 = 0;
while(li.size() < n){
int v2 = 2 * li.get(idx2);
int v3 = 3 * li.get(idx3);
int v5 = 5 * li.get(idx5);
int mini = Math.min(v2, Math.min(v3, v5));
li.add(mini);
if(mini == v2) idx2++;
if(mini == v3) idx3++;
if(mini == v5) idx5++;
}
return li.get(n-1);
}
}
方法二 : 最小堆
这种写法效率低点,但是是个思路;另外,需搞懂1. Comparator这种写法是什么语法; 2. Priority, Iterator的用法
class Solution {
public int nthUglyNumber(int n) {
if(n <= 5) return n;
PriorityQueue<Long> q = new PriorityQueue<>(
new Comparator<Long>(){
public int compare(Long a, Long b){
if(a < b){
return -1;
}
else if(a > b){
return 1;
}
else {
return 0;
}
}
});
q.add((long)1);
for(int i = 1; i < n; i++){
long x = q.remove();
Iterator<Long> it = q.iterator();
while(it.hasNext()){
if(x == it.next()) it.remove();
}
q.add( (long)(x * 2) );
q.add( (long)(x * 3) );
q.add( (long)(x * 5) );
}
return q.peek().intValue();
}
}
Is Subsquence
方法一: 自底向上, 递推 + memo
可以将O(N)空间优化为常数
class Solution {
public boolean isSubsequence(String s, String t) {
int lenS = s.length();
int lenT = t.length();
if(lenS > lenT) return false;
int memo = new int[lenS + 1];
memo[0] = -1;
char[] arrS = s.toCharArray();
char[] arrT = t.toCharArray();
for(int i = 0; i < lenS; i ++){
memo[i + 1] = lenT;
for(int j = memo[i] + 1; j < lenT; j ++){
if(arrT[j] == arrS[i]){
memo[i + 1] = j;
break;
}
}
}
return memo[lenS] != lenT;
}
}
413. Arithmetic Slices
方法一 :参考grandyang
方法二 : memo + 递推
dp[i]表示以位置i上的数字结尾的Arithmetic Slice的数目
这道题主要要搞清楚,为啥dp[i] = dp[i-1] + 1
class Solution {
public int numberOfArithmeticSlices(int[] A) {
if( A.length < 3 ) {
return 0;
}
int cnt = 0;
int[] dp = new int[A.length];
for( int i=2; i < A.length; i++ ) {
if(A[i] - A[i-1] == A[i-1] - A[i-2]) {
dp[i] = dp[i-1] + 1;
}
cnt += dp[i];
}
return cnt;
}
}
leetcode动态规划笔记一---一维DP的更多相关文章
- leetcode动态规划笔记二
动态规划 题目分类 一维dp 矩阵型DP Unique Paths II : 矩阵型DP,求所有方法总数 Minimum Path Sum:矩阵型,求最大最小值 Triangle : 矩阵型,求最大最 ...
- leetcode动态规划笔记三---单序列型
单序列型DP 相比一维DP,这种类型状态转移与过去每个阶段的状态都有关. Longest Increasing Subsequence : 求最大最小值 Perfect Squares : 求某个规模 ...
- leetcode算法笔记:二叉树,动态规划和回溯法
在二叉树中增加一行 题目描述 给定一个二叉树,根节点为第1层,深度为 1.在其第 d 层追加一行值为 v 的节点. 添加规则:给定一个深度值 d (正整数),针对深度为 d-1 层的每一非空节点 N, ...
- LEETCODE —— Maximum Subarray [一维DP]
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- 快速上手leetcode动态规划题
快速上手leetcode动态规划题 我现在是初学的状态,在此来记录我的刷题过程,便于以后复习巩固. 我leetcode从动态规划开始刷,语言用的java. 一.了解动态规划 我上网查了一下动态规划,了 ...
- Leetcode学习笔记(4)
题目1 ID121 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润. 注意你不能在买入股 ...
- Dynamic Programming - leetcode [动态规划]
115. Distinct Subsequences 96. Unique Binary Search Trees 120. Triangle 123. Best Time to Buy and Se ...
- [Leetcode][动态规划] 零钱兑换
一.题目描述 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: ...
- 动态规划(Dynamic Programming, DP)---- 最大连续子序列和
动态规划(Dynamic Programming, DP)是一种用来解决一类最优化问题的算法思想,简单来使,动态规划是将一个复杂的问题分解成若干个子问题,或者说若干个阶段,下一个阶段通过上一个阶段的结 ...
随机推荐
- [RN] React Native Fetch请求设置超时
一.实现思路 根据Promise.race的特性,我们在Promise.race里面添加两个任务,一个是正常的网络请求任务A,另外一个便是网络延时任务B,网络延时可以利用setTimeout方法实现. ...
- luogu P1725 琪露诺
二次联通门 : luogu P1725 琪露诺 /* luogu P1725 琪露诺 DP + 线段树 用线段树维护dp[i - R] ~ dp[i - L]的最大值 然后 转移方程是 dp[i] = ...
- 使用Visual Studio Code编辑Processing
最近想弄Sublime Text 3写Processing,但由于各种不知名原因导致无法编译,就想着换自去年以来超火的VScode试一下,还真给我试成功了. 1.下载https://code.visu ...
- x64汇编第二讲,复习x86汇编指令格式,学习x64指令格式
目录 x64汇编第二讲,复习x86汇编指令格式,学习x64指令格式 一丶x86指令复习. 1.1什么是x86指令. 1.2 x86与x64下的通用寄存器 1.3 OpCode 1.4 7种寻址方式 二 ...
- Flink入门介绍
什么是Flink Apache Flink是一个分布式大数据处理引擎,可以对有限数据流和无限数据流进行有状态计算.可部署在各种集群环境,对各种大小的数据规模进行快速计算. Flink特性 支持高吞吐. ...
- Http的状态码及状态码的类型
Http的状态码以及根据这些状态码分成5种类型 statusCode/100 /* * Copyright 2002-2013 the original author or authors. * * ...
- sudoku 心得 视觉消除法(Visual Elimination)
虽然我是程序员,但这里只介绍人类的思维方法. 这个方法我是从这里看到的: https://www.learn-sudoku.com/visual-elimination.html Most peopl ...
- mapdb的适用场景介绍
对于大部分系统来说,mapdb并无太大价值,而且增加了成本.但是如果一级缓存巨大例如数以十GB级别,或占据了整个JVM的1/2以上,mapdb的价值就会体现出来.正如其官网介绍: MapDB prov ...
- axios 设置headers token
axios({ method:"put", url:"....", data:{"action":"refreshToken&qu ...
- php 身份证验证类
<?php //身份证件验证 class chekcIdcard { /** * 验证身份证是否有效 * * @param $IDCard * @return bool */ public st ...