DS 红黑树详解
通过上篇博客知道,二叉搜索树的局限在于不能完成自平衡,从而导致不能一直保持高性能。
AVL树则定义了平衡因子绝对值不能大于1,使二叉搜索树达到了严格的高度平衡。
还有一种能自我调整的二叉搜索树,
红黑树 : 通过标记节点的颜色(红/黑),使其拥有自平衡的二叉搜索树。
红黑树性质 :
- 性质1:每个节点要么是黑色,要么是红色。
- 性质2:根节点是黑色。
- 性质3:每个叶子节点(NIL)是黑色。
- 性质4:每个红色结点的两个子结点一定都是黑色。
- 性质5:所有路径都包含数量相同的黑结点
这些约束强制了红黑树的关键性质: 红黑树没有一条路径会比其他路径的两倍长(同一起点)。所以这个树大致上是平衡的,不会像二叉搜索树出现极端情况。
是性质4和5导致路径上确保了这个结果。最短的路径只有黑色节点,最长路径有交替的红色和黑色节点。因为所有的路径黑色节点数量相同,所以没有路径能多于任何其他路径的两倍长。
红黑树节点定义:
enum Colour
{
RED,
BLACK,
}; template<class K,class V>
class RBtreeNode
{
RBtree<K,V>* _left;
RBtree<K,V>* _right;
RBtree<K,V>* _parent; pair<K,V> _kv;
Colour _col;
}; template<class K,class V>
class RBTree
{
typedef RBtreeNode<K,V> Node;
public:
bool Insert(const pair<K,V>& kv);
private:
Node* _root = nullptr;
}
红黑树的插入:
在结点插入后,需要遵循红黑树性质
新结点默认是红色,所以需要判断红黑树的性质是否遭到破坏(插入节点与父亲节点都为红色,违反性质4)
有以下三种情况:
1.u为红 ---> p,u-->黑 g-->红 cur=g,向上调整
2.cur和p在g的同一边,u不存在/为黑 --- cur,p在g左--- 左左 : g右旋, g--->红, p-->黑
cur,p在g右 --- 右右 : g左旋, g--->红,p--->黑
3.cur和p不在g的同一边,u不存在/为黑 --- p在g左,cur在p右--- 左右: p左旋
p在g右,cur在p左--- 右左: p右旋
--->变成情况2处理
插入结点代码:
bool Insert(const pair<K,V> _kv)
{
//插入结点
if(root == nullptr)
{
root=new Node(kv);
root->_col = BLACK;
return true;
}
Node* parent = nullptr;
Node* cur = root;
while(cur)
{
if(cur->kv.first < kv.first) else if(cur->kv.first > kv.first) else
return false;
}
cur = new Node(kv);
cur->_col = RED; //父节点连接插入的结点
if(parent->kv.first < kv.first)
{
parent->_right = cur;
cur->_parent = parent;
}
else
{
...
} //颜色调整
//红黑树遭到破坏: 红红相连
while(parent && parent->_col==RED)
{
Node* g = parent->_parent;
//叔叔在右边
if(parent == g->_left)
{
Node* u = g->_right;
//叔叔为红,变色调整
if(u && u->_col==RED)
{
parent->_col = BLACK;
u->_col = BLACK;
g->_col = RED; cur = g;
parent = cur->_parent;
}
//叔叔非红,旋转调整
else
{
//父亲和孩子没有对齐,左旋变齐
if(cur == parent->_right)
{
RotateL(parent);
swap(parent,cur);
}
//对齐,右旋并调色,完成调整
RotateR(g);
parent->_col = BLACK;
g->_col = RED; break;
}//end of 叔非红处理
}
//叔叔在左边
else
{
//....
} }//end of 红红相连 //按规定将其根置为黑 : 防止根为cur情况
_root->_col = BLACK;
return true;
}
STL标准的红黑树是这样的, 根的父亲不是nullptr而是header,使红黑树构成了闭环.
header->_left = rbtree.begin(), header->_right = rbtree.end(), header->_parent = root.
利用性质验证红黑树代码:
//判断是否为红黑树
bool isRBTree()
{
pNode root = _header->_parent; if(root == nullptr) return true;
//1.根是否黑色
if(root->_color == RED)
{
cout<<"根节点必须是黑色!"<<endl;
return false;
}
//2.每条路径黑色个数相同?
//可以任意遍历一条(最右)路径获取黑色节点数量
pNode cur = root;
int black_count = 0;
while(cur)
{
if(cur->_color == BLACK)
++black_count;
cur = cur->_right;
}
int k = 0;
return _isRBTree(root,k,black_count); } //看每一条路径是否和基准值相同
bool _isRBTree(pNode root,int curCount,int count)
{
//终止条件: 一条路径走完
if(root==nullptr){
if(curCount != count)
{
cout<<"每个路径黑色节点个数不同"<<endl;
return false;
}
return true;
} if(root->_color == BLACK)
++curCount; //3.没有红色连续的?
pNode parent = root->_parent;
if(parent && parent->_color == RED && root->_color == RED)
{
cout<<"有红色连续的节点"<<endl;
return fasle;
} return _isRBTree(root->_left,curCount,count)
&& _isRBTree(root->_right,curCount,count);
}
DS 红黑树详解的更多相关文章
- nginx 红黑树详解
1 介绍 这部分终于整理完了,太耗时间了,留下来备忘吧! 之前看STL源码时,只是研究了红黑树的插入部分.在stl源码剖析的书中,也没有涉及到删除操作的分析,这次对删除操作也进行了详细的研究, 并且还 ...
- DS AVL树详解
先说说二叉搜索树: 是有序的二叉树,根值>左节点值,右节点值>根值. 如果要查找某个值,二叉搜索树和二分查找一样,每进行一次值比较,就会减少一半的遍历区间. 但是,如果树插入的值一直递增/ ...
- 【Java入门提高篇】Day30 Java容器类详解(十二)TreeMap详解
今天来看看Map家族的另一名大将——TreeMap.前面已经介绍过Map家族的两名大将,分别是HashMap,LinkedHashMap.HashMap可以高效查找和存储元素,LinkedHashMa ...
- <JVM中篇:字节码与类的加载篇>03-类的加载过程(类的生命周期)详解
笔记来源:尚硅谷JVM全套教程,百万播放,全网巅峰(宋红康详解java虚拟机) 同步更新:https://gitee.com/vectorx/NOTE_JVM https://codechina.cs ...
- Java集合详解6:TreeMap和红黑树
Java集合详解6:TreeMap和红黑树 初识TreeMap 之前的文章讲解了两种Map,分别是HashMap与LinkedHashMap,它们保证了以O(1)的时间复杂度进行增.删.改.查,从存储 ...
- 红黑树原理详解及golang实现
目录 红黑树原理详解及golang实现 二叉查找树 性质 红黑树 性质 operation 红黑树的插入 golang实现 类型定义 leftRotate RightRotate Item Inter ...
- Java集合详解6:这次,从头到尾带你解读Java中的红黑树
<Java集合详解系列>是我在完成夯实Java基础篇的系列博客后准备开始写的新系列. 这些文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查 ...
- stl map底层之红黑树插入步骤详解与代码实现
转载注明出处:http://blog.csdn.net/mxway/article/details/29216199 本篇文章并没有详细的讲解红黑树各方面的知识,只是以图形的方式对红黑树插入节点需要进 ...
- Tree--RedBlackTree详解(2 - 3 - 4Tree)(红黑树)
#topics h2 { background: #2B6695; color: #FFFFFF; font-family: "微软雅黑", "宋体", &qu ...
随机推荐
- Python3 连接各类数据库
Python 标准数据库接口为 Python DB-API,Python DB-API为开发人员提供了数据库应用编程接口.它定义了一系列必须的对象和数据库存取方式, 以便为各种各样的底层数据库系统和多 ...
- 何时使用 django 以及何时不用?
选择一种语言和框架,因为你在上一个项目中使用了它或者因为你更熟悉它,但是这不是正确的方法. 项目启动 在开始一个新的软件项目之前,您需要评估哪种语言和框架最适合您所期望的结果.什么对你最重要?安全性. ...
- day 11
Clear thinking requires courage rather than intelligence. 清晰的思维需要勇气而不是智力.
- layui之table.render使用(含后台详细代码实现)
效果图如下: 前端实现代码如图(完整代码): <!DOCTYPE html> <html> <head> <meta charset="utf-8& ...
- linux运维 技能 2018
1.监控与日志 prometheus.grafana.zabbix ELK(elasticsearch logstash filebeat kibana) 2.容器类 harbor映像管理 docke ...
- Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization
Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization 2019-10-10 10:50:19 Paper ...
- vue form表单上传文件
<script src="https://cdn.staticfile.org/vue-resource/1.5.1/vue-resource.min.js">< ...
- java只允许输入数字字母下划线中文
public static void main(String[] args) { Pattern pattern = Pattern.compile("[_0-9a-z]+"); ...
- 二代身份Zheng复印(手机正反面拍照生成1:1复印件图像)
下载地址 2017年7月28日 1.支持文字水印:2.优化程序,修复Bug:3.升级版本为1.1. 2017年7月17日1.二代身份*证正面(白色按钮).反面(蓝色按钮)拍摄后,退出APP自动生成A4 ...
- 创建Observable序列
1. just()方法 该方法通过传入一个默认值来初始化 下面样例我们显示地标注出了observable的类型为Observable, 即指定了这个Observable所发出的事件携带的数据类型必须是 ...