莫比乌斯反演求LCM的另一种做法
一个经典问题
求
\[
\sum_{k=1}^n\mathbb{lcm}(k,n)
\]
一般的做法是使用\(\varphi(n)\)函数。
不经典的做法
\[
\begin{align*}
\sum_{k=1}^n\mathbb{lcm}(k,n)
&=\sum_{k=1}^n\frac{nk}{\gcd(n,k)}\tag{gcd与lcm的关系}\\
&=\sum_{d|n}\sum_{k=1}^{n/d}\frac{ndk}{d}[\gcd(n,dk)=d]\tag{枚举gcd(n,k)}\\
&=\sum_{d|n}\sum_{k=1}^{n/d}nk[\gcd(\frac{n}{d},k)=1]\tag{同消去d}\\
&=n\sum_{d|n}\sum_{k=1}^dk[\gcd(d,k)=1]\tag{用d代替n/d}\\
&=n\sum_{d|n}\sum_{k=1}^dk\sum_{j|gcd(d,k)}\mu(j)\tag{莫比乌斯函数的性质}\\
&=n\sum_{j|n}\mu(j)\sum_{d|n/j}\sum_{k=1}^djk\tag{交换求和次序}\\
&=n\sum_{j|n}\mu(j)j\sum_{d|n/j}\frac{d(d+1)}{2}\tag{等差数列求和公式}\\
&=\frac{n}{2}\left(\sum_{j|n}\mu(j)j\sum_{d|n/j}d^2+\sum_{j|n}\mu(j)j\sum_{d|n/j}d\right)\tag{拆分}\\
&=\frac{n}{2}(f(n)+g(n))\tag{设元}\\
\end{align*}
\]
计算\(f(n)\)
考虑
\[
f(n)=\sum_{j|n}\mu(j)j\sum_{d|n/j}d^2
\]
易证\(\mu(j)j\)和\(\sum\limits_{d|n}d^2\)都是积性函数。
则\(f(n)\)为积性函数\(\mu(j)j\)和\(\sum\limits_{d|n}d^2\)的狄利克雷卷积,可得\(f(n)\)为积性函数。
则\(f(n)\)可用欧拉筛法求出如下:
\[
\begin{align*}
f(p^k)
&=\mu(1)\sum_{d=0}^k(p^d)^2+\mu(p)p\sum_{d=0}^{k-1}(p^d)^2\tag{莫比乌斯函数的性质}\\
&=\sum_{d=0}^kp^{2d}-\sum_{d=0}^{k-1}p^{2d+1}\tag{整理}\\
&=\sum_{d=0}^{2k}(-p)^k\tag{合并}\\
&=\frac{1-(-p)^{2k+1}}{1+p}\tag{等比数列求和公式}\\
&=\frac{1+p^{2k+1}}{1+p}\tag{整理}\\
\end{align*}
\]
再维护一个最小质因数的次数\(p^k\)即可。
计算\(g(n)\)
考虑
\[
g(n)=\sum_{j|n}\mu(j)j\sum_{d|n/j}d
\]
同上,可得\(g(n)\)为积性函数。
则\(g(n)\)可
用欧拉筛法求出如下:
\[
\begin{align*}
g(p^k)
&=\mu(1)\sum_{d=0}^kj^d+\mu(p)p\sum_{d=0}^{k-1}j^d\tag{莫比乌斯函数的性质}\\
&=\sum_{d=0}^kj^d-\sum_{d=1}^{k}j^d\tag{整理}\\
&=1\tag{展开}\\
\end{align*}
\]
我们可以惊讶地发现\(g(n)\)恒等于\(1\)!
总结
则我们可以每次\(O(1)\)地求出
\[
\sum_{k=1}^n\mathbb{lcm}(k,n)=\frac{n}{2}(f(n)+1)
\]
莫比乌斯反演求LCM的另一种做法的更多相关文章
- bzoj 2154 莫比乌斯反演求lcm的和
题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...
- (暂时弃坑)(半成品)ACM数论之旅18---反演定理 第二回 Mobius反演(莫比乌斯反演)((づ ̄3 ̄)づ天才第一步,雀。。。。)
莫比乌斯反演也是反演定理的一种 既然我们已经学了二项式反演定理 那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用 莫比乌斯反演长下面这个样子(=・ω・=) d|n,表示n能够整除d,也就是d ...
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- ZOJ 3435 Ideal Puzzle Bobble 莫比乌斯反演
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4119 依然是三维空间内求(1,1,1)~(a,b,c)能看到的整点数,平移一下 ...
- 【JZOJ3623】【SDOI2014】数表(table) 树状数组+离线+莫比乌斯反演
题面 100 \[ Ans=\sum_{i=1}^n\sum_{j=1}^mg(gcd(i,j)) \] 其中, \[ g(d)=\sum_{i|d}i \] 我们注意到\(gcd(i,j)\)最多有 ...
- 树上莫比乌斯反演+分层图并查集——cf990G
/* 树上莫比乌斯反演 求树上 满足 d|gcd(au,av) gcd(au,av)的对数f(d) 如何求: 建立200000层新图,即对于每个数建立一个新图 在加边时,给gcd(au,av)的约数层 ...
- 【容斥原理,莫比乌斯反演】用容斥替代莫比乌斯反演第二种形式解决gcd统计问题
名字虽然很长.但是其实很简单,对于这一类问题基本上就是看你能不能把统计的公式搞出来(这时候需要一个会推公式的队友) 来源于某次cf的一道题,盼望上紫的我让潘学姐帮我代打一道题,她看了看跟我说了题解,用 ...
- 【bzoj2694】Lcm 莫比乌斯反演+线性筛
题目描述 求$\sum\limits_{i=1}^n\sum\limits_{j=1}^m|\mu(gcd(i,j))|lcm(i,j)$,即$gcd(i,j)$不存在平方因子的$lcm(i,j)$之 ...
- BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常
求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$ $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...
随机推荐
- FastCGI sent in stderr: "Primary script unknown" while reading response header from upstream,
在对nginx添加fastCGI的支持后,然后进行php页面验证,发现页面识别不到,不清楚什么情况,随后google了下,原来是Nginx内置变量问题惹的祸. 1.平台介绍: 1 2 3 4 5 6 ...
- GDB的安装
1.下载GDB7.10.1安装包 #wget http://ftp.gnu.org/gnu/gdb/gdb-7.10.1.tar.gz或者可以远程看下有哪些版本 http://ftp.gnu.org/ ...
- BZOJ 4571: [Scoi2016]美味
二次联通门 : BZOJ 4571: [Scoi2016]美味 /* BZOJ 4571: [Scoi2016]美味 dalao们都在说这题如果没有加法balabala就可以用可持久化trie解决了 ...
- IntelliJ IDEA 2017 JDK Tomcat Maven 配置步骤详解(一)
要求 配置 Java基础环境(实际上应该在虚拟机linux环境下 安装CentOS 7,但是我这电脑实在承受不住了) 安装 开发工具 IntelliJ IDEA 2017.1 第一部分: JDK ...
- python 之 字典常用操作
- UOJ#400. 【CTSC2018】暴力写挂 边分治 线段树合并
原文链接 www.cnblogs.com/zhouzhendong/p/UOJ400.html 前言 老年选手没有码力. 题解 先对第一棵树进行边分治,然后,设点 x 到分治中心的距离为 $D[x]$ ...
- BAT 定时将多个本地文件同步到共享目录
copy.bat 具体执行脚本,需要修改共享目录访问用户名,密码,同步的文件类型 list.txt 前面为本地文件夹,后面为共享目录,中间以”,”进行分割 附件地址: https://files. ...
- 模板 - 数学 - 多项式 - 快速数论变换/NTT
Huffman分治的NTT,常数一般.使用的时候把多项式的系数们放进vector里面,然后调用solve就可以得到它们的乘积.注意这里默认最大长度是1e6,可能需要改变. #include<bi ...
- laravel中图片的删除
laravel中图片的删除 一.总结 一句话总结: laravel里面删除的话还是建议用Storage的delete方法,不建议用原生php的unlink方法,不然没找到文件可能会报异常 二.lara ...
- Flink 之 Data Source
Data Sources 是什么呢?就字面意思其实就可以知道:数据来源. Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集.历史的数据集: 也可以用来做流处理,即实时的处理些实时 ...