bzoj5461 Minimax 题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5461
看到题目,必将m种权值离散化。
首先是一个显然的dp设计。
设$f(i,j)$表示第i个节点,最终取值为j(已离散化)的概率。
因为树上的节点儿子数不超过2,不妨设值k出现在左儿子上。
则有$f(x,k)=f(ls,k)*(pmx_x*\sum \limits_{j=1}^{k-1}f(rs,j)+pmn_x*\sum \limits_{j=k+1}^{m}f(rs,j))$
初态是$f(leaf,val[leaf])=1$,答案直接对$f(1)$统计即可。
从实际含义上理解,正确性是显然的。
所以dp前预处理前缀和,可以做到$O(n^2)$。
因为树上情况比较特殊,加上保证只有不超过两个儿子,并不自然地想到了线段树合并。
如果是叶子,插入权值为1的节点。
否则进行两个儿子的线段树合并。
在线段树合并的同时,维护两棵线段树当前子树的前缀后缀和。
如果递归到其中一棵树为空,给另一棵树打上乘一个值的标记就可以了。
最后$dfs(root[1])$统计答案。
该题复杂度为$O(mlogn)$,
证明:
线段树合并复杂度等于$merge$函数调用次数。
$merge$函数调用一次,除非遇到(线段树上的)叶子节点,必定销毁一个节点。
并且,线段树是二叉树,
也就是说遇到的(线段树上的)叶子节点个数不会多于销毁的节点个数。
只在遇到(题中树上的)叶子节点时插入了$mlogn$个节点,故得证。
bzoj5461 Minimax 题解的更多相关文章
- LOJ2537:[PKUWC2018]Minimax——题解
https://loj.ac/problem/2537 参考了本题在网上能找到的为数不多的题解. 以及我眼睛瞎没看到需要离散化,还有不开longlong见祖宗. ——————————————————— ...
- [PKUWC2018]Minimax 题解
根据题意,若一个点有子节点,则给出权值:否则可以从子节点转移得来. 若没有子节点,则直接给出权值: 若只有一个子节点,则概率情况与该子节点完全相同: 若有两个子节点,则需要从两个子节点中进行转移. 如 ...
- loj#2537. 「PKUWC2018」Minimax
题目链接 loj#2537. 「PKUWC2018」Minimax 题解 设\(f_{u,i}\)表示选取i的概率,l为u的左子节点,r为u的子节点 $f_{u,i} = f_{l,i}(p \sum ...
- BZOJ5461: [PKUWC2018]Minimax
BZOJ5461: [PKUWC2018]Minimax https://lydsy.com/JudgeOnline/problem.php?id=5461 分析: 写出\(dp\)式子:$ f[x] ...
- 题解-PKUWC2018 Minimax
Problem loj2537 Solution pkuwc2018最水的一题,要死要活调了一个多小时(1h59min) 我写这题不是因为它有多好,而是为了保持pkuwc2018的队形,与这题类似的有 ...
- [BZOJ5461][LOJ#2537[PKUWC2018]Minimax(概率DP+线段树合并)
还是没有弄清楚线段树合并的时间复杂度是怎么保证的,就当是$O(m\log n)$吧. 这题有一个显然的DP,dp[i][j]表示节点i的值为j的概率,转移时维护前缀后缀和,将4项加起来就好了. 这个感 ...
- 「ZJOI2019」&「十二省联考 2019」题解索引
「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...
- ZJOI2019 Day1 题解
想要继续向前,就从克服内心的恐惧开始. 麻将 题意 在麻将中,我们称点数连续的三张牌或三张点数一样的成为面子,称两张点数一样的牌为对子.一副十四张麻将牌的胡牌条件是可以分成四个面子和一个对子或者分成七 ...
- 【loj3044】【zjoi2019】Minimax
题目 描述 给出一颗树,定义根节点1的深度为1,其他点深度为父亲深度+1: 如下定义一个点的点权: 1.叶子:为其编号:2.奇数深度:为其儿子编号最大值:3.偶数深度:为其儿子编号最小值: ...
随机推荐
- css之纯css实现流程导航效果
:::tip 使用纯css线上 流程导航效果. 本文统一采取 flex 布局 ,你也可以采用其他布局实现,核心原理不变 ::: ## 方法一 利用裁剪 该方法IE下不支持 利用裁剪 clip ...
- 组件切换方式(Vue.js)
这里,我用一个注册登录两组件的切换实例来演示: 切换方式一 <!DOCTYPE html> <html lang="zh-CN"> <head> ...
- ES6 字符串&正则表达式
目录 第二章 字符串和正则表达式UTF-16码位codePointAt()方法String.fromCodePoint()方法normalize()方法正则表达式u修饰符其他字符串变更字符串中的字串识 ...
- 虚拟机-VMware小结
1.网卡的3种模式 桥接模式:虚拟机=物理机器,连接物理网卡,虚拟ip设置物理网卡的网段和网管.可上网. NAT模式:虚拟机把物理机器当做路由器,虚拟ip网段ip自动获取.可上网. https://w ...
- ip黑名单-做过ssh扫描黑的ip
# # hosts.deny This file contains access rules which are used to # deny connections to network servi ...
- 一、MySQL基础知识
一.背景介绍 我们每天都在访问各种网站.APP,如微信.QQ.抖音,今日头条等,这些东西上面都存在大量的信息,这些信息都需要有地方存储,存储在哪里呢?数据库. 所有我们需要开发一个网站.APP,数据库 ...
- MAC安装配置maven环境变量
1.下载maven包: 下载链接:
- echarts地图 绘制部分上海市公交线路数据
源代码地址 https://github.com/a1115040996/MyHTML/blob/gh-pages/echarts/roadMap.html 预览地址 https://a1115040 ...
- 如何学习numpy
可以通过官方中文文档 NumPy 中文文档
- blockingqueue.h
#include <mutex> #include <condition_variable> #include <deque> template <typen ...