题目链接

思路

首先这是一个阶梯博弈。

我们将金币两两组合,如果对方移动前一个,那么我们把后一个移动相同的距离,局面相当于没有变化。如果对方移动后一个,就相当于\(NIM\)游戏中,取走了一些石子。

所以这个游戏也就是金币两两组合后,有\(\lceil \frac{m}{2}\rceil\) 堆石子,进行\(NIM\)游戏

统计方案

然后考虑如何统计方案。

根据上面的结论。也就是我们要找出\(\lceil \frac{m}{2}\rceil\)堆石子,使他们个数异或和为0。

\(f[i][j]\)表示异或和的前i位异或起来为\(0\),已经有了j个石子的方案数。

就有如下的转移$$f[i][j]=\sum\limits_{k=0}^{2 ^{2k}\le j&k\le \lceil\frac{m}{2}\rceil}{f[i-1][j-2^{2k}]\times (^{\lceil \frac{m}{2} \rceil}_{2k})}$$

然后再考虑这\(\lceil \frac{m}{2} \rceil\)堆石子的位置。

利用隔板法。就相当于把\(\frac{m}{2}\)个挡板插到了长度为\(n-i\)(i为所放的石子长度)的序列里。

代码

/*
* @Author: wxyww
* @Date: 2019-05-11 18:24:32
* @Last Modified time: 2019-05-15 09:49:57
*/
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<ctime>
using namespace std;
typedef long long ll;
const int N = 150000 + 100,mod = 1e9 + 9;
#define int ll
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
int inv[N],f[20][N],jc[N];
int qm(int x,int y) {
int ret = 1;
for(;y;y >>= 1,x = 1ll * x * x % mod)
if(y & 1) ret = 1ll * ret * x % mod;
return ret;
}
int C(int x,int y) {
return 1ll * jc[x] * inv[y] % mod * inv[x - y] % mod;
}
signed main() {
int n = read(),m = read();
//预处理
jc[0] = 1;
for(int i = 1;i <= n + m;++i) jc[i] = 1ll * jc[i - 1] * i % mod;
inv[0] = 1;
for(int i = 1;i <= n + m;++i) inv[i] = qm(jc[i],mod - 2); int ans = C(n,m);
n -= m;
int num = (m + 1) >> 1;
//dp
f[0][0] = 1;
for(int i = 1;i <= 19;++i) {
int z = i - 1;
for(int j = 0;j <= n;++j) {
for(int k = 0;(k << z) <= j && k <= num;k += 2) {
f[i][j] += 1ll * f[i - 1][j - (k << z)] * C(num,k) % mod;
f[i][j] %= mod;
}
}
}
//统计答案
for(int i = 0;i <= n;++i) {
ans -= 1ll * f[19][i] * C(m / 2 + n - i,m / 2) % mod;
ans = (ans + mod) % mod;
}
cout<<ans;
return 0;
}

vijos2055 移动金币的更多相关文章

  1. [VIJOS2055][SDOI2019]移动金币:DP+组合数学

    分析 显然可以转化为阶梯nim. 于是问题转化为了对于所有\(i \in [0,n-m]\),求长度为\(\lfloor\frac{m+1}{2}\rfloor\),和为\(i\),异或和非\(0\) ...

  2. 分金币 bzoj 3293

    分金币(1s 128M)  coin [问题描述] 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的 ...

  3. Android播放gif动画,增加屏幕掉金币效果

    前言:播放gif的版本有很多,我这边使用Android自带的Movie类播放gif动画,也是在别人的基础上进行修改.有同样需求的朋友可以参考我的demo. 1.效果图如下: 2.部分主要代码 Main ...

  4. noi 1.5 45:金币

    描述 国王将金币作为工资,发放给忠诚的骑士.第一天,骑士收到一枚金币:之后两天(第二天和第三天)里,每天收到两枚金币:之后三天(第四.五.六天)里,每天收到三枚金币:之后四天(第七.八.九.十天)里, ...

  5. 清北学堂模拟day4 捡金币

    [问题描述]小空正在玩一个叫做捡金币的游戏.游戏在一个被划分成 n行 n列的网格状场地中进行.每一个格子中都放着若干金币,并且金币的数量会随着时间而不断变化. 小空的任务就是在网格中移动,拾取尽量多的 ...

  6. BZOJ3293: [Cqoi2011]分金币

    Description 圆桌上坐着n个人,每人有一定数量的金币,金币总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金币数目相等.你的任务是求出被转手的金币数量的最小值. Inpu ...

  7. [ACM_几何] UVA 11300 Spreading the Wealth [分金币 左右给 最终相等 方程组 中位数]

    Problem A Communist regime is trying to redistribute wealth in a village. They have have decided to ...

  8. 网页音乐突破金币(RMB)下载限制

    我平时有时间会跳跳舞 跳舞肯定要有音乐呀 于是在网上找音乐 好不容易找到了一个网站,里面有很多很全的音乐 正准备下载呢,尼玛居然要金币! 在这里解释一下,金币你可以通过回复帖子或者发帖子得到,但是数量 ...

  9. 【BZOJ-3293&1465&1045】分金币&糖果传递×2 中位数 + 乱搞

    3293: [Cqoi2011]分金币 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 854  Solved: 476[Submit][Status] ...

随机推荐

  1. Oracle中TIMESTAMP时间的显示格式

    Oracle中的TIMESTAMP数据类型很多人用的都很少,所以即使最简单的一个查询返回的结果也会搞不清楚到底这个时间是什么时间点. 例如: 27-1月 -08 12.04.35.877000 上午 ...

  2. mybatis错误:There is no getter for property named 'delegate' in 'class com.sun.proxy.$Proxy某某'

    错误描述: There is no getter for property named 'delegate' in 'class com.sun.proxy.$Proxy32' 错误原因: 1.你有多 ...

  3. sitecore 如何创建一个渠道分类

    您可以通过渠道跟踪联系人与您的品牌的所有互动.您可以将渠道与广告系列活动相关联,以便跟踪联系人与您的品牌互动的方式.通过比较各个渠道的目标转化率,您可以了解哪些渠道可以带来更好的联系参与度.您可以在体 ...

  4. 服务器部署Laravel

    安装lnmp环境 参考:简书 - Centos 7 下安装LNMP官方最新版 安装redis 参考:简书 - Centos 7下使用yum安装redis 安装nodejs npm nodejs分8.x ...

  5. C#开发自动照片(图片)裁剪(缩放)工具

    1.需求分析 用winform窗体程序,开发一个能够自动.批量对图片进行缩放和裁剪的程序. 原本想直接从网上找类型的工具直接用,但是无奈现在网上能找到的工具,要么不能用,要么就是很 恶心的下载完后还有 ...

  6. C#关键字 const与readonly

    ====const==== const关键字来声明某个常量字段或常量局部变量.常量字段和常量局部变量不是变量而且不能修改.常量可以为数字.布尔值.字符串或null引用. 常数声明的类型指定声明引入的成 ...

  7. Delphi Webbrowser使用方法详解

    1.webbroser介绍 该组件是一个浏览器组件,可以显示一个指定地址的网页.设置网页打开时的主页以及对网页进行相关的操作,同时也可以对HTML文件进行剪切.复制.粘贴.删除等操作.该 组件在Int ...

  8. apicloud开发app

    1.apicloud官网 2.注册登录 3.开发控制台 4.创建应用 5.代码=>svn拉取代码,账号:注册账号的邮箱,密码:获取分支密码中的密码 6.编辑器下载对应的插件或者直接使用apicl ...

  9. 「白帽挖洞技能提升」ThinkPHP5 远程代码执行漏洞-动态分析

    ThinkPHP是为了简化企业级应用开发和敏捷WEB应用开发而诞生的,在保持出色的性能和至简代码的同时,也注重易用性.但是简洁易操作也会出现漏洞,之前ThinkPHP官方修复了一个严重的远程代码执行漏 ...

  10. 【学习笔记】兄弟连LINUX视屏教程(沈超 李明)

    发现自己的linux水平楞个瓜皮,找个视屏教程学习一哈 1 linux系统简介 1.1 UNIX和Linux发展史 unix发展历史:1969年,美国贝尔实验室的肯.汤普森开发出unix系统,1971 ...