洛谷 P1064 金明的预算方案

https://www.luogu.org/problem/P1064

JDOJ 1420: [NOIP2006]金明的预算方案 T2

https://neooj.com/oldoj/problem.php?id=1420

Description

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:v[j1]*w[j1]+v[j2]*w[j2]+  …+v[jk]*w[jk]。(其中*为乘号)请你帮助金明设计一个满足要求的购物单。

Input

输入的第1行,为两个正整数,用一个空格隔开: N    m  其中N(< 32000)表示总钱数,m(< 60)为希望购买物品的个数。)

从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数 v    p    q (其中v表示该物品的价格(v< 10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q> 0,表示该物品为附件,q是所属主件的编号)

Output

输出只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(< 200000)。

Sample Input

1000 5 800 2 0 400 5 1 300 5 1 400 3 0 500 2 0

Sample Output

2200 
 
题目分析:
有依赖的背包问题。
一开始看到这种题目就很是复杂,很难以理解。
实际上的确是这样。
有依赖的背包问题就是想选这件必须再把主件买了。
这就是依赖。
但是解决也挺简单的原理。
分类讨论一一枚举就可以过。
当然也可以在附件上先跑01背包,然后再考虑主件的时候考虑选还是不选即可。
但是要注意的是,这里只有一个附件,所以可以用分类枚举。
如果是多个附件呢?
需要树形DP(蒟蒻不会)
但是做这题还是挺有用的。
再次说明,本题需要较强的数据结构基础。
数据咋存,这是个问题。
能看懂不?看不懂评论/
 
代码:
#include<cstdio>
#include<algorithm>
using namespace std;
int n,m;
int v,p,q;
int mainw[];
int mainc[];
int fuw[][];
int fuc[][];
int dp[];
int main()
{
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
scanf("%d%d%d",&v,&p,&q);
if(q==)
{
mainw[i] = v;
mainc[i] = v * p;
}
else
{
fuw[q][]++;
fuw[q][fuw[q][]] = v;
fuc[q][fuw[q][]] = v * p;
}
}
for (int i=;i<=m;i++)
for (int j=n;mainw[i]!= && j>=mainw[i];j--)
{
dp[j] = max(dp[j],dp[j-mainw[i]]+mainc[i]);
if (j >= mainw[i] + fuw[i][])
dp[j] = max(dp[j],dp[ j - mainw[i] - fuw[i][] ] + mainc[i] + fuc[i][]);
if (j >= mainw[i] + fuw[i][])
dp[j] = max(dp[j],dp[ j - mainw[i] - fuw[i][] ] + mainc[i] + fuc[i][]);
if (j >= mainw[i] + fuw[i][] + fuw[i][])
dp[j] = max(dp[j],dp[ j - mainw[i] - fuw[i][] - fuw[i][] ] + mainc[i] + fuc[i][] + fuc[i][]);
}
printf("%d",dp[n]);
return ;
}
 

NOIP 2006 金明的预算方案的更多相关文章

  1. NOIP 2006 金明的预算方案(洛谷P1064,动态规划递推,01背包变形,滚动数组)

    一.题目链接:P1064 金明的预算方案 二.思路 1.一共只有五种情况 @1.不买 @2.只买主件 @3.买主件和附件1(如果不存在附件也要运算,只是这时附件的数据是0,也就是算了对标准的结果也没影 ...

  2. 「NOIP2006」「LuoguP1064」 金明的预算方案(分组背包

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NNN元钱就行” ...

  3. [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案

    [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案 试题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴 ...

  4. NOIP2006 金明的预算方案

    1.             金明的预算方案 (budget.pas/c/cpp) [问题描述] 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈 ...

  5. 动态规划(背包问题):HRBUST 1377 金明的预算方案

    金明的预算方案 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行 ...

  6. Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)

    Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己 ...

  7. [LuoguP1064][Noip2006]金明的预算方案

    金明的预算方案(Link) 题目描述 现在有\(M\)个物品,每一个物品有一个钱数和重要度,并且有一个\(Q\),如果\(Q = 0\),那么该物件可以单独购买,当\(Q != 0\)时,表示若要购买 ...

  8. 算法笔记_103:蓝桥杯练习 算法提高 金明的预算方案(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些 ...

  9. tyvj 1057 金明的预算方案 背包dp

    P1057 金明的预算方案 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 NOIP2006 提高组 第二道 描述 金明今天很开心,家里购置的新房就要领钥匙了 ...

随机推荐

  1. [PHP] 再续 Laravel 5.5 接口 跨域问题 【终极暴力解决办法】

    上文中提到 Laravel5.5 使用 laravel-cors 实现 Laravel 的跨域配置 用插件来跨域 此方法能解决一部分api 请求问题 但我碰到的是 接口 请求size 超过10k,导致 ...

  2. web app升级—带进度条的App自动更新

    带进度条的App自动更新,效果如下图所示:   技术:vue.vant-ui.5+ 封装独立组件AppProgress.vue: <template> <div> <va ...

  3. Paper | Toward Convolutional Blind Denoising of Real Photographs

    目录 故事背景 建模现实噪声 CBDNet 非对称损失 数据库 实验 发表在2019 CVPR. 摘要 While deep convolutional neural networks (CNNs) ...

  4. centos 安装python3.7

    先安装依赖包: yum -y install bzip2 bzip2-devel ncurses openssl openssl-devel openssl-static xz lzma xz-dev ...

  5. Debug 路漫漫-12:Python: ValueError: 'userid' is both an index level and a column label, which is ambiguous.

    啊,又遇到难题了 == 想要对两个 dataframe 做自然连接 merge,连接的key 为 “userid”,但是报错:ValueError: 'userid' is both an index ...

  6. 关于Pragma

    /** This is a introduction of how to use pragma. */ #pragma once /// This is used for include the he ...

  7. css3 rem手机自适应框架

    css3 rem手机自适应框架 rem是按照html的字体大小来 所以 不同宽度浏览器 htmlfont-size不一样 就可以做到自适应了 此方法比百分比方便<pre><!DOCT ...

  8. vue自定义事件---拖拽

    margin布局拖拽 Vue.directive('drag', { bind(el, binding, vnode, oldVnode) { const dialogHeaderEl = el.qu ...

  9. C#,二分法,BinarySearch()

    static int BinarySearch(int[] arr,int key,int low,int high) { low = 0;high = arr.Length - 1; while(l ...

  10. Python - 字符串 - 第七天

    Python 字符串 字符串是 Python 中最常用的数据类型.我们可以使用引号( ' 或 " )来创建字符串. 创建字符串很简单,只要为变量分配一个值即可.例如: var1 = 'Hel ...