OpenCV vs. Armadillo vs. Eigen on Linux
OpenCV vs. Armadillo vs. Eigen on Linux
From:http://nghiaho.com/?p=936
In this post I’ll be comparing 3 popular C++ matrix libraries found on Linux.
OpenCV is a large computer vision library with matrix support. Armadillo wraps around LAPACK. Eigen is an interesting library, all the implementation is in the C++ header, much like boost. So it is simple to link into, but takes more time compile.
The 5 matrix operations I’ll be focusing on are: add, multiply, transpose, inversion, SVD. These are the most common functions I use. All the libraries are open source and run on a variety of platforms but I’ll just be comparing them on Ubuntu Linux.
Each of the 5 operations were tested on randomly generated matrices of different size NxN with the average running time recorded.
I was tossing up whether to use a bar chart to display the result but the results span over a very large interval. A log graph would show all the data easily but make numerical comparisons harder. So in the end I opted to show the raw data plus a normalised version to compare relative speed ups. Values highlight in red indicate the best results.
Add
Performing C = A + B
Raw data
Results in ms | OpenCV | Armadillo | Eigen |
4×4 | 0.00098 | 0.00003 | 0.00002 |
8×8 | 0.00034 | 0.00006 | 0.00017 |
16×16 | 0.00048 | 0.00029 | 0.00077 |
32×32 | 0.00142 | 0.00208 | 0.00185 |
64×64 | 0.00667 | 0.00647 | 0.00688 |
128×128 | 0.02190 | 0.02776 | 0.03318 |
256×256 | 0.23900 | 0.27900 | 0.30400 |
512×512 | 1.04700 | 1.17600 | 1.33900 |
Normalised
Speed up over slowest | OpenCV | Armadillo | Eigen |
4×4 | 1.00x | 30.53x | 44.41x |
8×8 | 1.00x | 5.56x | 2.02x |
16×16 | 1.62x | 2.66x | 1.00x |
32×32 | 1.46x | 1.00x | 1.12x |
64×64 | 1.03x | 1.06x | 1.00x |
128×128 | 1.52x | 1.20x | 1.00x |
256×256 | 1.27x | 1.09x | 1.00x |
512×512 | 1.28x | 1.14x | 1.00x |
The average running time for all 3 libraries are very similar so I would say there is no clear winner here. In the 4×4 case where OpenCV is much slower it might be due to overhead in error checking.
Multiply
Performing C = A * B
Raw data
Results in ms | OpenCV | Armadillo | Eigen |
4×4 | 0.00104 | 0.00007 | 0.00030 |
8×8 | 0.00070 | 0.00080 | 0.00268 |
16×16 | 0.00402 | 0.00271 | 0.00772 |
32×32 | 0.02059 | 0.02104 | 0.02527 |
64×64 | 0.14835 | 0.18493 | 0.06987 |
128×128 | 1.83967 | 1.10590 | 0.60047 |
256×256 | 15.54500 | 9.18000 | 2.65200 |
512×512 | 133.32800 | 35.43100 | 21.53300 |
Normalised
Speed up over slowest | OpenCV | Armadillo | Eigen |
4×4 | 1.00x | 16.03x | 3.52x |
8×8 | 3.84x | 3.35x | 1.00x |
16×16 | 1.92x | 2.84x | 1.00x |
32×32 | 1.23x | 1.20x | 1.00x |
64×64 | 1.25x | 1.00x | 2.65x |
128×128 | 1.00x | 1.66x | 3.06x |
256×256 | 1.00x | 1.69x | 5.86x |
512×512 | 1.00x | 3.76x | 6.19x |
Average running time for all 3 are similar up to 64×64, where Eigen comes out as the clear winner.
Transpose
Performing C = A^T.
Raw data
Results in ms | OpenCV | Armadillo | Eigen |
4×4 | 0.00029 | 0.00002 | 0.00002 |
8×8 | 0.00024 | 0.00007 | 0.00009 |
16×16 | 0.00034 | 0.00019 | 0.00028 |
32×32 | 0.00071 | 0.00088 | 0.00111 |
64×64 | 0.00458 | 0.00591 | 0.00573 |
128×128 | 0.01636 | 0.13390 | 0.04576 |
256×256 | 0.12200 | 0.77400 | 0.32400 |
512×512 | 0.68700 | 3.44700 | 1.17600 |
Normalised
Speed up over slowest | OpenCV | Armadillo | Eigen |
4×4 | 1.00x | 17.00x | 12.57x |
8×8 | 1.00x | 3.45x | 2.82x |
16×16 | 1.00x | 1.81x | 1.20x |
32×32 | 1.56x | 1.26x | 1.00x |
64×64 | 1.29x | 1.00x | 1.03x |
128×128 | 8.18x | 1.00x | 2.93x |
256×256 | 6.34x | 1.00x | 2.39x |
512×512 | 5.02x | 1.00x | 2.93x |
Comparable running time up to 64×64, after which OpenCV is the winner by quite a bit. Some clever memory manipulation?
Inversion
Performing C = A^-1
Raw data
Results in ms | OpenCV | Armadillo | Eigen |
4×4 | 0.00189 | 0.00018 | 0.00090 |
8×8 | 0.00198 | 0.00414 | 0.00271 |
16×16 | 0.01118 | 0.01315 | 0.01149 |
32×32 | 0.06602 | 0.05445 | 0.05464 |
64×64 | 0.42008 | 0.32378 | 0.30324 |
128×128 | 3.67776 | 4.52664 | 2.35105 |
256×256 | 35.45200 | 16.41900 | 17.12700 |
512×512 | 302.33500 | 122.48600 | 97.62200 |
Normalised
Speed up over slowest | OpenCV | Armadillo | Eigen |
4×4 | 1.00x | 10.22x | 2.09x |
8×8 | 2.09x | 1.00x | 1.53x |
16×16 | 1.18x | 1.00x | 1.15x |
32×32 | 1.00x | 1.21x | 1.21x |
64×64 | 1.00x | 1.30x | 1.39x |
128×128 | 1.23x | 1.00x | 1.93x |
256×256 | 1.00x | 2.16x | 2.07x |
512×512 | 1.00x | 2.47x | 3.10x |
Some mix results up until 128×128, where Eigen appears to be better choice.
SVD
Performing [U,S,V] = SVD(A)
Raw data
Results in ms | OpenCV | Armadillo | Eigen |
4×4 | 0.00815 | 0.01752 | 0.00544 |
8×8 | 0.01498 | 0.05514 | 0.03522 |
16×16 | 0.08335 | 0.17098 | 0.21254 |
32×32 | 0.53363 | 0.73960 | 1.21068 |
64×64 | 3.51651 | 3.37326 | 6.89069 |
128×128 | 25.86869 | 24.34282 | 71.48941 |
256×256 | 293.54300 | 226.95800 | 722.12400 |
512×512 | 1823.72100 | 1595.14500 | 7747.46800 |
Normalised
Speed up over slowest | OpenCV | Armadillo | Eigen |
4×4 | 2.15x | 1.00x | 3.22x |
8×8 | 3.68x | 1.00x | 1.57x |
16×16 | 2.55x | 1.24x | 1.00x |
32×32 | 2.27x | 1.64x | 1.00x |
64×64 | 1.96x | 2.04x | 1.00x |
128×128 | 2.76x | 2.94x | 1.00x |
256×256 | 2.46x | 3.18x | 1.00x |
512×512 | 4.25x | 4.86x | 1.00x |
Looks like OpenCV and Armadillo are the winners, depending on the size of the matrix.
Discussion
With mix results left, right and centre it is hard to come to any definite conclusion. The benchmark itself is very simple. I only focused on square matrices of power of two, comparing execution speed, not accuracy, which is important for SVD.
What’s interesting from the benchmark is the clear difference in speed for some of the operations depending on the matrix size. Since the margins can be large it can have a noticeable impact on your application’s running time. It would be pretty cool if there was a matrix library that could switch between different algorithms depending on the size/operation requested, fine tuned to the machine it is running on. Sort of like what Atlas/Blas does.
So which library is faster? I have no idea, try them all for your application and see
OpenCV vs. Armadillo vs. Eigen on Linux的更多相关文章
- OpenCV入门笔记(一) Linux下的安装
关于OpenCV,有中文的官方站点.里面翻译了官网的教程和API等.中文官方Tutorials见这里:[Tutorials] 一.Ubuntu下的安装 能够选择直接从库里安装,或者手动编译安装,请參考 ...
- ubuntu 16.04 上编译和安装C++机器学习工具包mlpack并编写mlpack-config.cmake | tutorial to compile and install mplack on ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/1cd6a04d/,欢迎阅读最新内容! tutorial to compile and install mplack on ubun ...
- OpenCV2学习笔记01:Linux下OpenCV开发环境的搭建
个人已经厌倦了Windows下的开发方式,于是决定转到Linux平台上来,当然我也知道这个转变会很艰辛,但是我还是要坚持.所以,后面的所有开发我都会基于Linux和Qt,先从开发环境的搭建开始做起,当 ...
- opencv Installation in Linux and hello world
http://opencv.org/quickstart.html Installation in Linux These steps have been tested for Ubuntu 10.0 ...
- Qt Opencv 在Linux下摄像头简单示例(转)
下面写的文章也许网上也有类似的,但是大多数都没有给出思路及背景,让初学者每次都只能学到一点皮毛,不少知识需要大量搜索零碎地拼凑起来.题外话,虽然现在是碎片化信息时代,但正是这样信息整合能力也显得非常重 ...
- linux源码编译安装OpenCV
为了尽可能保证OpenCV的特性,使用OpenCV源码编译安装在linux上.先从安装其依赖项开始,以ubuntu 14.04.X为例讲解在Linux上源码编译安装OpenCV,其他linux版本可以 ...
- Ubuntu下编译安装OpenCV 2.4.7并读取摄像头[转]
主要参考: 1.http://www.ozbotz.org/opencv-installation/ 2.http://www.ozbotz.org/opencv-install-troublesho ...
- Linux下配置OpenCV1.0环境
自己一直嚷嚷着打算学学图像识别,识别个简单的,车牌号,验证码之类的,之前查过资料,OpenCV可以实现.昨天花了一个下午终于配置好环境了,今天写下总结. OpenCV这一名称包含了Open和Compu ...
- opencv 61篇
(一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报 分类: OpenCV ...
随机推荐
- PHP MySQLi 参考手册
PHP MySQLi函数 PHP MySQLi是MySQL的增强版本,PHP7 已经废弃了MySQL扩展,全面推荐使用MySQLi或者PDO. MySQLi安装>>>>> ...
- CSS 选择器大全
在CSS中,选择器是用于选择要设置样式的元素的模式. 选择器 例子 描述 .class .intro 选择class=“intro”的所有元素 #id #firstname 选择id=“firstna ...
- 在centos7 中docker info报错docker bridge-nf-call-iptables is disabled 的解决方法
在centos7中安装好docker以后,启动成功,运行命令 docker info ,报错: [root@iz2ze2bn5x2wqxdeq65wlpz ~]# docker info Client ...
- Vue-cli3脚手架工具快速创建一个项目
1.首先全局安装一下vue-cli3 npm install -g @vue/cli 或 yarn global add @vue/cli vue -V查看版本(这里注意V是大写哦) 2.vue cr ...
- swift开发之--简单封装Alamofire请求类以及简单使用SnapKit
以前在swift3的时候,写过类似的,那个时候还没有很成熟的网络请求类库,在这里,还是衷心感谢大神们的付出! 具体效果如下,先上图: 点击按钮的时候,请求数据,数据结构如下: { ; reason = ...
- pushad与popad
版权声明:本文为博主原创文章,转载请附上原文出处链接和本声明.2019-08-24,00:40:12作者By-----溺心与沉浮----博客园 PUSHAD与POPAD 这两条指令其实就是讲EAX,E ...
- 图解Java数据结构之稀疏数组
在编程中,算法的重要性不言而喻,没有算法的程序是没有灵魂的.可见算法的重要性. 然而,在学习算法之前我们需要掌握数据结构,数据结构是算法的基础. 我在大学的时候,学校里的数据结构是用C语言教的,因为对 ...
- HeadFirst设计模式---抽象工厂
类图 抽象披萨商店类 public abstract class PizzaStore { public void orderPizza(String type) { AbstractPizza ab ...
- leetcode - 括号字符串是否有效
括号字符串是否有效 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合. 左括号必须以正确的顺序闭合. ...
- day06 作业
猜年龄游戏 ''' 1. 给定年龄,用户可以猜三次年龄 2. 年龄猜对,让用户选择两次奖励 3. 用户选择两次奖励后可以退出 ''' import random age = random.randin ...