Flink 物理分区
Flink还通过以下函数对转换后的数据精确流分区进行低级控制(如果需要)。
1、自定义分区
使用用户定义的分区程序为每个元素选择目标任务。
dataStream.partitionCustom(partitioner, "someKey")
dataStream.partitionCustom(partitioner, 0)
如简单的hash 分区(下面的实例不是官网):
val input = env.addSource(source)
.map(json => {
// json : {"id" : 0, "createTime" : "2019-08-24 11:13:14.942", "amt" : "9.8"}
val id = json.get("id").asText()
val createTime = json.get("createTime").asText()
val amt = json.get("amt").asText()
LateDataEvent("key", id, createTime, amt)
})
.setParallelism(1)
.partitionCustom(new Partitioner[String] {
override def partition(key: String, numPartitions: Int): Int = {
// numPartitions 是下游算子的并发数
key.hashCode % numPartitions
}
}, "id")
.map(l => {
LateDataEvent(l.key, l.id, l.amt, l.createTime)
})
.setParallelism(3)
注:key 是传入的field 的类型
2、随机分区
根据均匀分布随机分配元素(类似于: random.nextInt(5),0 - 5 在概率上是均匀的)
dataStream.shuffle()
源码:
@Internal
public class ShufflePartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L; private Random random = new Random(); @Override
public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
// 传入下游分区数
return random.nextInt(numberOfChannels);
} @Override
public StreamPartitioner<T> copy() {
return new ShufflePartitioner<T>();
} @Override
public String toString() {
return "SHUFFLE";
}
}
3、均匀分区 rebalance
分区元素循环,每个分区创建相等的负载。在存在数据偏斜时用于性能优化。
dataStream.rebalance()
源码:
public class RebalancePartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L; private int nextChannelToSendTo; @Override
public void setup(int numberOfChannels) {
super.setup(numberOfChannels); nextChannelToSendTo = ThreadLocalRandom.current().nextInt(numberOfChannels);
} @Override
public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
// 轮训的发往下游分区
nextChannelToSendTo = (nextChannelToSendTo + 1) % numberOfChannels;
return nextChannelToSendTo;
} public StreamPartitioner<T> copy() {
return this;
} @Override
public String toString() {
return "REBALANCE";
}
}
4、rescale
分区元素循环到下游操作的子集。如果您希望拥有管道,例如,从源的每个并行实例扇出到多个映射器的子集以分配负载但又不希望发生rebalance()会产生完全重新平衡,那么这非常有用。这将仅需要本地数据传输而不是通过网络传输数据,具体取决于其他配置值,例如TaskManagers的插槽数。
上游操作发送元素的下游操作的子集取决于上游和下游操作的并行度。例如,如果上游操作具有并行性2并且下游操作具有并行性4,则一个上游操作将元素分配给两个下游操作,而另一个上游操作将分配给另外两个下游操作。另一方面,如果下游操作具有并行性2而上游操作具有并行性4,那么两个上游操作将分配到一个下游操作,而另外两个上游操作将分配到其他下游操作。在不同并行度不是彼此的倍数的情况下,一个或多个下游操作将具有来自上游操作的不同数量的输入。
dataStream.rescale()
源码:
public class RescalePartitioner<T> extends StreamPartitioner<T> {
private static final long serialVersionUID = 1L; private int nextChannelToSendTo = -1; @Override
public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
if (++nextChannelToSendTo >= numberOfChannels) {
nextChannelToSendTo = 0;
}
return nextChannelToSendTo;
} public StreamPartitioner<T> copy() {
return this;
} @Override
public String toString() {
return "RESCALE";
}
}
很遗憾这段代码只能看出,上游分区往下游分区发的时候,每个上游分区内部的数据是轮训发到下游分区的(没找到具体分配的地方,从这段代码debug,一直往上,找到分区出现在 RuntimeEnvironment 的对象里面,找不具体分配的地方)。
5、广播
向每个分区广播元素。
dataStream.broadcast()
Flink 物理分区的更多相关文章
- linux下vmware的安装、物理分区使用及卸载
1.安装 先下载安装文件VMware-Workstation-Full-12 在命令行下执行下载的文件安装即可(需要root权限) wget https://download3.vmware.com/ ...
- 扩大缩小Linux物理分区大小
由于产品在不同的标段,设备硬盘也不同, 有些500G,有些320G有些200G,开始在大硬盘上做的配置,想把自己定制好的Linux克隆到小硬盘上,再生龙会纠结空间大小的问题, 因此需要做一些分区的改变 ...
- ubuntu下挂载物理分区到openmediavault4
准备弄个NAS,但还没想好直接买现成,还是自己组装一台,先在虚拟机上体验下OpenMediaVault4和黑群晖.主系统是ubuntu,但刚买的时候这笔记本是装windows的,除了ubuntu的系统 ...
- aliyun添加数据盘后的物理分区和lvm逻辑卷两种挂载方式
一.普通磁盘分区管理方式 1.对磁盘进行分区 列出磁盘 # fdisk -l # fdisk /dev/vdb Welcome to fdisk (util-linux 2.23.2). Change ...
- linux 分区 物理卷 逻辑卷
今天我们主要说说分区.格式化.SWAP.LVM.软件RAID的创建哈~ 格式化 查看当前分区:fdisk -l 这个命令我们以前是讲过的,我现在问下,ID那项是什么意思? 83 是代表EXT2和E ...
- linux磁盘 分区 物理卷 卷组 逻辑卷 文件系统加载点操作案例
转自:truemylife.linux磁盘 分区 物理卷 卷组 逻辑卷 文件系统加载点操作案例 基本概念: 磁盘.分区.物理卷[物理部分] 卷组[中间部分] 逻辑卷.文件系统[虚拟化后可控制部分] 磁 ...
- Flink学习笔记:Operators串烧
本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKhaz ...
- <译>Flink编程指南
Flink 的流数据 API 编程指南 Flink 的流数据处理程序是常规的程序 ,通过再流数据上,实现了各种转换 (比如 过滤, 更新中间状态, 定义窗口, 聚合).流数据可以来之多种数据源 (比如 ...
- flink学习笔记-split & select(拆分流)
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...
随机推荐
- 求序列A中每个数的左边比它小的数的个数(树状数组)
给定一个有N个正整数的序列A(N<=10^5,A[i]<=10^5),对序列中的每一个数,求出序列中它左边比它小的数的个数. 思路:树状数组的经典应用(裸题) #include <i ...
- 【CSP游记S】
简略:初三小蒟蒻本想体验一下提高,结果尝到了省选的滋味.fclose没有打,目前不知道会不会有影响,很伤心. day 1 大早上的6:30起床天好黑啊~,想起这次没有面包吃,到华生园买了包熊博士(毕竟 ...
- .Net Core WebApi实现跨域
.Net Core 需要引用一个包 Microsoft.AspNetCore.Cors 让接口实现跨域,需要配置两个地方. 一.Startup.cs 这里需要配置两个地方 public void C ...
- Dominating Patterns (AC 自动鸡模版题, 出现次数最多的子串)
传送门 题意: 给你n个模式串, 再给你一个 文本串,问模式串在文本串中出现次数最多是多少. 出现次数最多的模式串有哪些. 解: 模版题. #include <bits/stdc++.h> ...
- 数据库(以MySQL为例)
一.数据库简介 数据库就是数据的仓库,用来按照特定的结构去组织和管理数据,有了数据库可以更加方便.便捷的操作需要保存的数据 不管是什么数据库,最终都是将数据保存到硬盘中,只是存储的格式不同于文本文件 ...
- 关于css3属性filter
今天看百度百科,看到其中一页所有图片背景全都设置为了灰白色,于是研究了番,发现是应用了filter滤镜这个属性. // 修改所有图片的颜色为黑白 (100% 灰度): img { -webkit-fi ...
- Bzoj 4147: [AMPPZ2014]Euclidean Nim(博弈)
4147: [AMPPZ2014]Euclidean Nim Time Limit: 1 Sec Memory Limit: 256 MB Description Euclid和Pythagoras在 ...
- P1902 刺杀大使
题目描述 伊朗伊斯兰革命卫队(某恐怖组织)正在策划一起刺杀行动,他们的目标是沙特驻美大 使朱拜尔.他们来到了沙特驻美使馆,准备完成此次刺杀,要进入使馆首先必须通过使馆前 的防御迷阵. 迷阵由 n*m ...
- AWS服务器上安全组端口设置和访问的问题
在搭建测试环境时使用AWS服务器环境,AWS EC2需要设置安全组开放端口,如果端口未进行授权则不允许访问,后台授权界面如下: 1.查看某个端口是否在AWS后台被开放,并允许访问: netstat - ...
- SpringData 简单的条件查询
今天在写springdata条件查询时,JpaRepository的findOne方法,不知道是因为版本的原因还是其他原因,总是查询不出来数据 //springdata jpa版本为1.5.15,配置 ...